اثرلایه نازک نقره در نانو ساختار SnO2/Ag/SnO2 و استفاده از آن‌ به عنوان نانوپوشش‌‌ کم‌گسیل برروی شیشه‌های ساختمانی با هدف ذخیره-سازی انرژی

نوع مقاله : مقاله پژوهشی


1 دانشکده فیزیک، دانشگاه سمنان، سمنان، ایران

2 گروه فیزیک دانشگاه سمنان


این مطالعه، اثر تغییر ضخامت نقره به عنوان لایه میانی در ساختارهای سه لایه­ ای SnO2(100nm)/Ag(t)/SnO2(100nm)  را که بر زیرلایه شیشه و با استفاده از روش زاویه دید (GLAD) و به روش DC/RF مگنترون اسپاترینگ لایه­ نشانی شده­ اند را، مورد بررسی قرار می­د هد. ویژگی­های نوری، الکتریکی و گرمایی نمونه­ ها مورد مطالعه قرار گرفتند. نتایج نشان داد که ساختارهای سه لایه­ای SnO2 / Ag / SnO2  ، شرایط لازم و مطلوبی برای کاربرد به عنوان پوشش­های عایق گرما و ذخیره کننده انرژی بر پنجره­های ساختمانی را دارند. به طوریکه با در نظر گرفتن ضخامت 30 نانومتر برای نقره و 100 نانومتر برای SnO2، مقادیر گسیلندگی، مقادیر U و G ، مینیمم و به ترتیب برابر 0/07 ، W/m2.k 1/44 و0/481 است. در نتیجه انتقال گرما از محیط و تابش نور خورشید از این پوشش به حداقل می­رسد. همچنین، میزان عبور در ناحیه مرئی برای ضخامت­های 25 و 30 نانومتر ماکسیمم و به ترتیب برابر 18/71 و 3/62 درصد است.   


عنوان مقاله [English]

influence of silver thin film on SnO2 / Ag / SnO2 nanostructure and its use as low-emission nanocoatings on building glass for energy storage

نویسندگان [English]

  • mina rabizadeh 1
  • Mohamnad hossein Ehsani 2
1 School of Physics, semnan university, semnan, iran
2 Faculty of Physics
چکیده [English]

This study investigates the effect of changing the thickness of silver as an intermediate layer in SnO2 (100nm) / Ag (t) / SnO2 (100nm) three-layer structures on glass substrate using GLAD (glancing angle deposition) technique and DC/RF Magnetron sputtering method. Optical, electrical and thermal properties of the samples were studied. The results showed that SnO2 / Ag / SnO2 three-layer structures have the necessary conditions for use as thermal insulation coatings and energy storage on building windows. Considering the thickness of 30 nm for silver and 100 nm for SnO2, the values ​​of Emissivity, U-Value and G-Value are minimal and equal to 0.07, (W / m2.k) 1.44 and 0.481, respectively. As a result, heat transfer from the environment and sunlight from this coating is minimized. Also, the rate of passage in the visible area for thicknesses of 25 and 30 nm is maximum and equal to 71.18 and 62.3%, respectively.

کلیدواژه‌ها [English]

  • SnO2/Ag/SnO2 trilayer structure
  • Magnetron sputtering
  • low emission structure
 [1] Ellmer, Klaus. "Past achievements and future challenges in the development of optically transparent electrodes." Nature Photonics 6.12, 809-817(2012).
[2] D.S. Ginley, D.C. Paine, Handbook of transparent conductors, Springer, New York 2010.
[3] Dalapati, Goutam Kumar, et al. "Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review." Journal of Materials Chemistry A (2021).
[4] Kong, Heon, Hyun-Yong Lee. "High performance flexible transparent conductive electrode based on ZnO/AgOx/ZnO multilayer." Thin Solid Films 696, 137759, (2020).
[5] Yu, Shihui, Weifeng Zhang, Lingxia Li, Dan Xu, Helei Dong, and Yuxin Jin. "Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit." Thin Solid Films 552: 150-154, (2014).
[6] J. Lewis, S. Grego, B. Chalamala, E. Vick and D. Temple, “Highly flexible transparent
electrodes for organic light-emitting diode-based displays”, Appl. Phys. Lett. 85,3450–3452, (2004).
[7] Y.H. Cho, N.S. Parmar, S. Nahm, J.W. Choi, “Full range optical and electrical properties
of Zn-doped SnO2 and oxide/metal/oxide multilayer thin films deposited on flexible PET substrate”, J. Alloy. Compd. 694, 217–222, (2017).
[8] Jeong, Jin-A., Yong-Seok Park, and Han-Ki Kim. "Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics." Journal of Applied Physics 107, no. 2, 023111, (2010).
[9] J.A. Jeong, H.K. Kim,” Low resistance and highly transparent ITO-Ag-ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk heterojunction organic solar cells”, Sol. Energy Mat. Sol. Cells 93, 1801–1809, (2009).
[10] Ren, Ningyu, Jun Zhu, and Shiliang Ban. "Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature." AIP Advances 7, no. 5, 055009, (2017).
[11] S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer
films as transparent composite electrode with high figure of merit, Thin Solid Films”, 552
150–154, (2014).
[12] J.H. Kim, J.H. Lee, S.W. Kim, Y.Z. Yoo, T.Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices”, Cerm. Int. 41, 7146–7150, (2015).
[13] D. Miao, S. Jiang, S. Shang, Z. Chen, “Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering”, Cerm. Int. 40, 12847–12853, (2014).
[14] Y.S. Park, H.K. Kim, “Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost efficient roll-to-roll sputtering for flexible organic photovoltaics”, J. Vac. Sci. Technol. 28, 41–47, (2010).

[15] S.B. Heo, J.H. Jeon, T.K. Gong, H.J. Moon, S.K. Kim, B.C. Cha, J.H. Kim, U.C. Jung, S.
Park, D. Kim, “Influence of a Ni interlayer on the optical and electrical properties of trilayer
GZO/Ni/GZO films”, Ceram. Int. 41, 9668–9670, (2015).

[16] A. Dhar, T.L. Alford, “Optimization of TiO2/Cu/TiO2 multilayer as transparent composite
electrode (TCE) deposited on flexible substrate at room temperature”, ECS Solid State Lett. 3 , 33–36, (2014).
[17] Y. Yin, C. Lan, H. Guo, C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-Free electrochromic devices”, ACS Appl. Mater. Interfaces 8, 3861–3867, (2016).
[18] H.W. Lu, C.W. Huang, P.C. Kao, S.Y. Chu, “ITO-free organic light-emitting diodes with MoO3/Al/MoO3 as semitransparent anode fabricated using thermal deposition method”, Appl.
Surf. Sci. 347, 116–121, (2015).
[19] A. Dhar, T.L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent
composite electrode on flexible substrate with high figure of merit”, J. Appl. Phys. 112
103113, (2012).
[20] X. Liu, X. Cai, J. Qiao, J. Mao, N. Jiang, “The design of ZnS/Ag/ZnS transparent conductive multilayer films”, Thin Solid Films 441, 200–206, (2003).
[21] Sahu, Dipti Ranjan, and Jow-Lay Huang. "The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere." Thin Solid Films 516.2-4, 208-211, (2007).
[22] Hong, C. H., Y. J. Jo, H. A. Kim, I-H. Lee, and J. S. Kwak. "Effect of electron beam irradiation on the electrical and optical properties of ITO/Ag/ITO and IZO/Ag/IZO films." Thin Solid Films 519, no. 20, 6829-6833, (2011).
 [23] Vishwakarma, S. R., J. P. Upadhyay, and H. C. Prasad. "Physical properties of arsenic-doped tin oxide thin films." Thin Solid Films 176 1, 99-110, (1989).
[24] Kim, Jiwon, Sangwon Baek, Jae Yong Park, Kwang Ho Kim, and Jong‐Lam Lee. "Photonic Multilayer Structure Induced High Near‐Infrared (NIR) Blockage as Energy‐Saving Window." Small 17, no. 29, 2100654, (2021).
[25] Liu, Yang, Qunfeng Chen, Gengmei Liu, Tao Tao, Haodong Sun, Zhenhui Lin, Lihui Chen, Qingxian Miao, and Jianguo Li. "Molecularly engineered CMC-caged PNIPAM for broadband light management in energy-saving window." Carbohydrate Polymers, 119056, (2022).
[26] Wang, Zhiqiang, Qi Tian, and Jie Jia. "Numerical study on performance optimization of an energy-saving insulated window." Sustainability 132, 935, (2021).
[27] Moghaddam, Saman Abolghasemi, Magnus Mattsson, Arman Ameen, Jan Akander, Manuel Gameiro Da Silva, and Nuno Simões. "Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate." Energies 14, no. 22 , 7584, (2021).
[28] Sun, Kewei, Dong Zhang, Hongfeng Yin, Lulu Cheng, Hudie Yuan, and Chunli Yang. "Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer." Applied Surface Science 578, 152051, (2022).
[29] Rabizadeh, M., M. H. Ehsani, and M. M. Shahidi. "Tuning the optical properties of SnO2/Ag/SnO2 tri-layers by changing Ag thickness." Infrared Physics & Technology 109 103421. (2020).
[30] Alhamd, M. W., Sadeq Naeem Atiyah, and Firas T. Almusawi. “"Arrangement of Silver Nanostructures on Permeable Silicon and Examination of Their Optical Properties." Iraqi Journal of Nanotechnology 2, 1-6, (2021).
[31] Duguet, Thomas, et al. "DFT simulation of XPS reveals Cu/epoxy polymer interfacial bonding." The Journal of Physical Chemistry C 123.51, 30917-30925, (2019).
[32] Wang, Wei, Xiaojun Wei, Chuanshen Wang, Wencai Zhou, Bailin Zhu, Chongjie Wang, and Linfei Liu. "Fabrication and thermo stability of the SnO2/Ag/SnO2 tri-layer transparent conductor deposited by magnetic sputtering." Ceramics International 47, no. 3 3548-3552. (2021)
 [33] Jang, Jin-Kyu, Hyun-Jin Kim, Jae-Wook Choi, Yeon-Hak Lee, Sung-Bo Heo, Yu-Sung Kim, Young-Min Kong, and Daeil Kim. "Influence of Ag Interlayer on the Optical and Electrical Properties of SnO 2 Thin Films." Journal of the Korean institute of surface engineering 54, no. 3 119-123. (2021)
[34] Wang, Wei, et al. "Fabrication and thermo stability of the SnO2/Ag/SnO2 tri-layer transparent conductor deposited by magnetic sputtering." Ceramics International 47.3, 3548-3552, (2021).
[35] Shahidi, M. M., H. Rezagholipour Dizaji, M. H. Ehsani, and M. E. Ghazi. "Effect of GLAD technique on optical and electrical properties of SnO2/Ag/SnO2 structure." Infrared Physics & Technology 106 103263. (2020).
[36] Nezhad, Elham Haratian, Hamid Haratizadeh, and Behrouz Mohammad Kari. "Influence of Ag mid-layer in the optical and thermal properties of ZnO/Ag/ZnO thin films on the glass used in Buildings as insulating glass unit (IGU)." Ceramics International 45.8, 9950-995, (2019).
[37] Tezel, Fatma Meydaneri̇, and İ Afşin Kari̇per. "Structural and Optical Properties of Undoped and Silver, Lithium and Cobalt-Doped ZnO Thin Films." Surface Review and Letters 27.04, 1950138, (2020).
[38] Mohamed, S. H. "Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system." Journal of Physics and Chemistry of Solids 69. 10 , 2378-2384, (2008).
[39] Sharma, Vikas, Parmod Kumar, Ashish Kumar, K. Asokan, and K. Sachdev. "High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode." Solar Energy Materials and Solar Cells 169, 122-131, (2017).
[40] Zhang, Congyu, Jiadong Zhao, Hao Wu, and Shengwen Yu. "The enhancement of thermal endurance in doped low emissive ZnO/Ag/ZnO multilayer thin film." Journal of Alloys and Compounds 832, 154983, Zhang, Congyu, Jiadong Zhao, Hao Wu, and Shengwen Yu. "The enhancement of thermal endurance in doped low emissive ZnO/Ag/ZnO multilayer thin film." Journal of Alloys and Compounds 832, 154983, , (2020).
 [41] Ramana, Maduru Venkata, and Shaik Saboor. "A novel glazing system filled with hydrogel granules: energy saving, diurnal illumination, color rendering, and co2 emission mitigation prospective." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects”, 1-16, , (2020).