به دست آوردن آب از هوا با نانوچندسازه بسپاری پلی اتیلن/ تیتانیم دی‌اکساید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 حالت جامد-دانشکده فیزیک- دانشگاه یزد-یزد

2 گروه حالت جامد، دانشکده فیزیک، دانشگاه یزد، یزد

3 گروه اتمی مولکولی، دانشکده فیزید، دانشگاه یزد، یزد

چکیده

 مشکل کمبود آب ناشی از بارندگی بسیار کم و همچنین، توزیع نامناسب آن، باعث به وجود آمدن مسائل اقتصادی و مشکلات کشاورزی شده است. همچنین، در این راستا منابع معمول تامین آب مانند چاه­ها نیز به دلیل اضافه برداشت دچار عواقب جبران ناپذیر اقتصادی و اجتماعی شده­ اند. یکی از راه حل­های موجود در دهه ­های اخیر استفاده از منابع موجود برای به دست آوردن آب مانند به دست آوردن آب­های موجود در هوا است. در این پژوهش، به بررسی موضوع تامین آب از رطوبت هوا با لایه‌های بسپاری همراه با نانوذرات تیتانیم دی‌اکساید پرداخته ­ایم. بدین منظور، تاثیر مقدار غلظت‌های متفاوت نانوذرات تیتانیم‌دی‌اکساید بر مقدار به دست آوردن و جذب با لایه‌های مورد نظر در رطوبت 90 % و دمای 15 و 5 درجه سانتی‌گراد مورد بررسی قرار گرفت. همچنین، مقدار آب جمع آوری شده، بر حسب ساعت تا مدت 5 ساعت اندازه‌گیری و با توجه به مشخصات لایه‌ها بررسی شد. نتایج نشان می‌دهندکه به علت وجود دی اکساید، لایه­ های آماده سازی شده قابلیت جذب رطوبت هوا و تبدیل آن به قطرات آب قابل دسترس را دارا است. گرچه در دماهای پایین بازدهی لایه‌ها بدلیل چگالش سریع‌تر بخارات آب بالاتر است، نتایج نشان داده‌اند که تغییرات دما بر به دست آوردن آب بالایه‌هایی که دارای درصدهای متفاوت نانوذرات تیتانیم دی‌اکساید هستند تاثیر بسزایی دارد. بطوریکه در دمای 5  و 15 درجه سانتی‌گراد بترتیب لایه حاوی غلظت بالاتر و پایین‌تر نانوذرات تیتانیم دی اکساید دارای بیشترین قدرت به دست آوردن آّب هستند. 

کلیدواژه‌ها


عنوان مقاله [English]

Feasibility of Dew harvesting from air humidity by polyethylene / TiO2 polymer nanocomposite

چکیده [English]

The problem of water shortage due to very low rainfall and its improper distribution has caused economic and agricultural problems. In this regard, the usual sources of water supply, such as water wells, have suffered irreparable economic and social consequences due to over-harvesting. One of the solutions available in recent decades is the use of available resources in water harvesting such as the water harvesting in the air. In this research, we have investigated the issue of water supply from air humidity by polymer layers with titanium dioxide nanoparticles. For this purpose, the effect of different concentrations of titanium dioxide nanoparticles on the rate of water harvesting by the desired layers at 90% humidity and at the temperature 15 and 5 ° C was investigated. Also, the amount of water collected was measured in terms of hours for 5 hours and according to the characteristics of the layers were analyzed. The results showed that the prepared layers have the ability to absorb air moisture and convert it into available water droplets due to the presence of TiO2nanoparticles in the layers. Although the efficiency of the layers is higher at low temperatures due to the faster condensation of water vapor, the results show that temperature changes have a significant effect on dew harvesting of water by layers with different percentages of TiO2nanoparticles, as the layers containing higher and lower concentrations of TiO2 nanoparticles have the highest power dew harvesting of water at temperatures of 5 and 15 ° C, respectively.

کلیدواژه‌ها [English]

  • Dew harvesting
  • Polymer nanocomposite
  • Polyethylene
  • Titanium dioxide Nanoparticles
  • Water spill
  • water absorption
[1] Rouessac, F. and Rouessac, A., Chemical analysis: modern instrumentation methods and techniques. John Wiley & Sons, 2013.
[2] Malik, F.T., Clement, R.M., Gethin, D.T., Krawszik, W. and Parker, A.R., Nature's moisture harvesters: a comparative review. Bioinspiration & biomimetics, 9(3), 031002, 2014.
[3] Bresci, E., Wake characterization downstream of a fog collector. Atmospheric research, 64(1-4), 217-225, 2002.
[4] Mandal, R.B. ed., Water resource management. Concept Publishing Company, 2006.
[5] Jacobs, A.F.G., Heusinkveld, B.G. and Berkowicz, S.M., Passive dew collection in a grassland area, The Netherlands. Atmospheric Research, 87(3-4), 377-385, 2008.
[6] Reif, J.H. and Alhalabi, W., Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, 48, 152-165, 2015.
[7] Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X. and Yang, R., Radiative sky cooling: Fundamental principles, materials, and applications. Applied Physics Reviews, 6(2),.021306, 2018.
[8] Dai, X.; Sun, N.; Nielsen, S.O.; Stogin, B. B.; Wang, J.; Yang, S.; Wong, T.-S., Hydrophilic Directional Slippery Rough Surfaces for Water Harvesting. Sci. Adv. 4, 0919-0924, 2018.
[9] Li, Chang, Yufang Liu, Chunlei Gao, Xin Li, Yan Xing, and Yongmei Zheng. "Fog harvesting of a bioinspired nano cone-decorated 3D fiber network." ACS applied materials & interfaces 11, 4 ,4507-4513, 2019.
[10] Jarimi, Hasila, Richard Powell, and Saffa Riffat. "Review of sustainable methods for atmospheric water harvesting." International Journal of Low-Carbon Technologies 15, 253-276, 2020.
[11] UÇAR, İ.O. and ERBİL, H.Y., Droplet condensation on polymer surfaces: A review. Turkish Journal of Chemistry, 37(4), 643-674, 2013.
[12] Nilsson, T., Initial experiments on dew collection in Sweden and Tanzania. Solar Energy Materials and Solar Cells, 40(1), 23-32, 1996.
[13] Eppelbaum, L., Kutasov, I. and Pilchin, A., Applied geothermics . Springer Berlin Heidelberg. 99-149, 2014.
[14] Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X. and Yang, R., Radiative sky cooling: Fundamental principles, materials, and applications. Applied Physics Reviews, 6(2),.021306, 2019.
[15] Mishra, S., 2018. Warka water: Innovative water harvesting method from thin air.
[16] Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K. and Ozga-Zielinski, B., A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustainable Water Resources Management, 2(1), 71-86, 2016.
[17] Tu, Y., Wang, R., Zhang, Y. and Wang, J., Progress and expectation of atmospheric water harvesting. Joule, 2(8),.1452-1475, 2018.
[18] Qi, H., Wei, T., Zhao, W., Zhu, B., Liu, G., Wang, P., Lin, Z., Wang, X., Li, X., Zhang, X. and Zhu, J., An Interfacial Solar Driven Atmospheric Water Generator Based on a Liquid Sorbent with Simultaneous Adsorption–Desorption. Advanced Materials, 31(43), 1903378, 2019.
[19] Zhou, M., Song, H., Xu, X., Shahsafi, A., Xia, Z., Ma, Z., Kats, M.A., Zhu, J., Ooi, B.S., Gan, Q. and Yu, Z., September. Accelerating vapor condensation with daytime radiative cooling. In New Concepts in Solar and Thermal Radiation Conversion II  International Society for Optics and Photonics. 11121, 1112107, 2019.
[20] Mukhopadhyay, A., Cole, W.T. and Saykally, R.J., 2015. The water dimer I: Experimental characterization. Chemical Physics Letters, 633, 13-26,  2015.
 [21] Shokri, Aref, and Kazem Mahanpoor. "Removal of Ortho-Toluidine from Industrial Wastewater by UV/TiO2 Process." 213-223, 2016.
[22] Rostami, Mehdi, Hossein Mazaheri, Ali Hassani Joshaghani, and Aref Shokri. "Using Experimental Design to Optimize the Photo-degradation of P-Nitro Toluene by Nano-TiO2 in Synthetic Wastewater." International Journal of Engineering 32, no.: 1074-1081, 2019.
[23] Shokri, Aref, Ahmad Bayat, and Kazem Mahanpoor. "Employing Fenton-like process for the remediation of petrochemical wastewater through Box–Behnken design method." Desal Water Treat 166,135-143, 2019.
[24] Peng, Qi, Li Jia, Yi Ding, Chao Dang, Liaofei Yin, and Xiao Yan. "Influence of groove orientation on dropwise condensation on hydrophobic and hierarchical super hydrophobic surfaces with microgroove arrays." International Communications in Heat and Mass Transfer 112 104492, 2020.
[25] Xing, Yan, Weifeng Shang, Qianqian Wang, Shile Feng, Yongping Hou, and Yongmei Zheng. "Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection." ACS applied materials & interfaces 11, 11, 10951-10958, 2019.
 [26] J. Xu, T. Li, J. Chao, S. Wu, T. Yan, W. Li, B. Cao and R. Wang, Efficient Solar-Driven Water Harvesting from Air with Metal–Organic Frameworks Modified by Hygroscopic Salt, Angew. Chem., Int. Ed, 59, 2–11, 2020.
[27] R. Li, Y. Shi, M. Wu, S. Hong and P. Wang, improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent, Nano Energy, 67, 104255, 2020.
[28] Uddin, Md Nizam, Fenil J. Desai, Muhammad M. Rahman, and Ramazan Asmatulu. "A highly efficient fog harvester of electrospun permanent super hydrophobic–hydrophilic polymer nanocomposite fiber mats." Nanoscale Advances 2, 10, 4627-4638, 2020.
[29] Rostami, M., Hassani Joshaghani, A., Mazaheri, H., & Shokri, A. Photo-degradation of P-Nitro Toluene Using Modified Bentonite Based Nano-TiO2 Photocatalyst in Aqueous Solution. International Journal of Engineering, 34(4), 756-762, 2021.
[30] Cincinelli, A., Scopetani, C., Chelazzi, D., Lombardini, E., Martellini, T., Katsoyiannis, A., Fossi, M.C. and Corsolini, S., Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere, 175, 391-400, 2017.
[31] Babu, M.M., Prasad, P.S., Rao, P.V., Govindan, N.P., Singh, R.K., Kim, H.W. and Veeraiah, N., Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+ on physico-mechanical and in vitro bioactivity. Ceramics International, 45(17),.23715-23727, 2019.
[32] Beysens, D.. Estimating dew yield worldwide from a few meteo data. Atmospheric Research 167, 146–155, 2016.