بررسی قطبش پذیری نانولوله‌های کربنی تک دیواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه آزاد اسلامی واحد ملایر، ملایر، ایران

2 گروه فیزیک مهندسی، دانشگاه صنعتی کرمانشاه، کرمانشاه، ایران

چکیده

یک مدل نظری برای قطبش پذیری عرضی نرمال شده یک نانولوله­ی کربنی تک دیواره در تقریب شبه استاتیک ارائه شده است. در این راه، یک نانولوله­ی کربنی تک دیواره بصورت یک لایه استوانه­ای بی­نهایت نازک از الکترون­های π و σ مدل شده است و تحریک­های الکترونی بر روی سطح این لایه به­وسیله تئوری هیدرودینامیک کوانتومی دو
شاره­ای دو بعدی توصیف شده است. عبارت کلی برای قطبش­پذیری سامانه با حل معادله­های لاپلاس و هیدرودینامیک کوانتومی با شرایط مرزی مناسب، به­دست آمده است. با استفاده از فرمول قطبش­پذیری، طیف خاموشی سامانه بررسی شده است که در توافق بسیار خوبی با نتایج پیشین است. بنابراین، روش مبتنی بر تقریب شبه استاتیک ممکن است که به عنوان یک تئوری ساده و توانمند در بررسی خصوصیت­های نوری نانولوله­های کربنی در نظر گرفته شود.

کلیدواژه‌ها


[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58, 1991.
 
[2] T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, Localized and delocalized electronic states in single-wall carbon nanotubes, Phys. Rev. Lett, 80, 4729-4732, 1998.
 
[3] C. Yannouleas, E. N. Bogachek, U. Landman, Collective excitations of multishell carbon microstructures: Multishell fullerenes and coaxial nanotubes, Phys. Rev. B, 53, 10225-10236, 1996.
 
[4] X. Jiang, Collective plasmon excitations in graphene tubules, Phys. Rev. B, 54, 13487-13490, 1996.
 
[5] T. Stöckli, J. M. Bonard, A. Chatelain, Z. L. Wang and P. Stadelmann, Collective oscillations in a single-wall carbon nanotube excited by fast electrons,  Phys. Rev. B, 64, 115424, 2001.
 
[6] D.J. Mowbray, Z. L. Miskovic, F.O. Goodman, Y.-N. Wang, Interactions of fast ions with carbon nanotubes: Two-fluid model, Phys. Rev. B, 70, 195418, 2004.
 
[7] A. Moradi, Surface plasmon–polariton modes of metallic single-walled carbon nanotubes, Photonics Nanostruct. Fundam. Appl. 11, 85-88, 2013.
 
[8] A. Moradi, Extinction properties of single-walled carbon nanotubes: two-fluid model, Phys. Plasmas 21, 032106, 2014.
 
[9] A. Moradi, H. R. Zangeneh, F. Karimi Moghadam, Effective permittivity of single-walled carbon nanotube composites: two-fluid model, Phys. Plasmas 22, 122104, 2015.
[10]  L. X. Benedict, S. G. Louie, M. L. Cohen, Static polarizabilities of single-wall carbon nanotubes, Phys. Rev. B 52, 8541-8549, 1995.
 
[11] A. Moradi, Quantum nonlocal polarizability of metallic nanowires, Plasmonics 10, 1225-1230, 2015.
 
[12] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983.
 
[13]A. Moradi, Extinction properties of metallic nanowires: quantum diffraction and retardation effects, Phys. Lett. A 379, 2379-2383, 2015.