سنتز و بررسی خواص نانوکامپوزیت CdS/PVA تهیه شده به روش CBD

نوع مقاله : مقاله پژوهشی

نویسنده

مجتمع پژوهشی شمال‌غرب کشور (بناب)، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، تهران

چکیده

در این کار، نقاط کوانتومی CdS به صورت کلوئیدی در بستر پلیمر پلی ونیل الکل (PVA) با روش لایه‌نشانی حمام شیمیایی (CBD) تهیه شدند. از سه ترکیب مختلف در حمام شیمیایی برای تهیه نقاط کوانتومی CdS مورد استفاده قرار گرفت. در حالت اول نسبت یون‌های Cd2+ بیشتر از یون‌های S2- بود. در حالت دوم نسبت یون‌های Cd2+ کمتر از یونهای S2- بود و در حالت سوم نسبت یون‌های Cd2+ مساوی یونهای S2- بود. خواص اپتیکی شامل طیف جذبی، طیف‌ نورتابی و گاف انرژی مورد مطالعه قرار گرفت. با توجه به طیف XRD می‏توان گفت فاز تشکیل شده برای نانو ذرات CdS ترکیبی از ساختار شش گوشی و مکعبی زینک بلند می‌باشد. از نتایج AFM مشاهده می‌شود که در هر سه نمونه نانو ذرات CdS در بستر پلیمری جای گرفته‌اند و نمونه‌ی تهیه شده از محلول 2 دارای توزیع یکنواخت‌تری از اندازه ذرات نسبت به دو تای دیگر هستند. تصاویر TEM نشان داد که ذرات CdS تقریباً کروی شکل بوده و با افزایش غلظت یون Cd2+ در محلول اندازه ذرات بزرگ می‌شود. گاف انرژی نمونه‌ها در محدوده‌ی eV 45/2 تا eV 84/2 بدست آمد که در مقایسه با مقدار گاف انرژی ماده‌ی کپه‌ایی CdS یعنی eV 42/2 بزرگتر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and investigation of properties of CdS/PVA nanocomposite prepared by CBD method

نویسنده [English]

  • Tavakkol Tohidi
Northwest Research Complex (Bonab), Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran
چکیده [English]

Abstract: In this work, CdS quantum dots embedded in polyvinyl alcohol (PVA) polymer were prepared in colloidal form using the chemical bath deposition (CBD) method. Three different compounds were used in the chemical bath to prepare CdS quantum dots. In the first case, the ratio of Cd2+ ions was higher than that of S2- ions. In the second case, the ratio of Cd2+ ions was lower than that of S2- ions, and in the third case, the ratio of Cd2+ ions was equal to that of S2- ions. Optical properties including energy gap, and absorption and emission spectra were studied. According to the XRD spectrum, it can be said that the phase formed for CdS nanoparticles is a combination of hexagonal and zinc blende cubic structures. From the results of atomic force microscopy (AFM), it can be seen that CdS nanoparticles are embedded in the polymer matrix, and the sample prepared from Solution 2 has a more uniform distribution of particle size than the samples from the other two solutions. The TEM images showed that CdS particles are nearly spherical, and with increasing concentration of Cd2+ ions in the solution, the particle size increases. The energy gap of the samples was found to be in the range of 2.45 eV to 2.84 eV, which is larger than the energy gap of CdS bulk, i.e., 2.42 eV.

کلیدواژه‌ها [English]

  • Optical properties
  • Nanocomposite
  • CdS
  • PVA
  • Chemical bath deposition method
  1.  

    1. Duan Z, Jiang Y, Tai H. Recent advances in humidity sensors for human body related humidity detection. Journal of Materials Chemistry C. 2021;9(42):14963-80.

    Doi:10.1039/D1TC04180K

    1. Rajkumar K, Kumar RR. Gas sensors based on two-dimensional materials and its mechanisms. Fundamentals and sensing applications of 2D materials: Elsevier; 2019. p. 205-58.

    Doi:10.1016/B978-0-08-102577-2.00006-3

    1. Sun L. Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering. 2019;27(10):2251-60.

    Doi:10.1016/j.cjche.2019.05.003

    1. Siaw W, Tsuji T, Manaf NA, Patah MA, Jan BM, editors. Synthesis of graphene oxide from industrial waste. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing.

    Doi: 10.1088/1757-899X/778/1/012050

    1. Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science. 2019;1(1):31-47.

    Doi:10.1016/j.nanoms.2019.02.004

    1. Thomas N, Mathew S, Nair KM, O'Dowd K, Forouzandeh P, Goswami A, et al. 2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability. 2021;13:100073.

    Doi: 10.1016/j.mtsust.2021.100073

    1. Dong H, Li D, Pang J, Zhang Q, Xie J, editors. Highly sensitive and fast-response humidity sensor based on saw resonator and mos 2 for human activity detection. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS); 2021: IEEE.

    Doi: 10.1109/MEMS51782.2021.9375370

    1. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Advanced materials. 2017;29(34):1702076.

    Doi: 10.1002/adma.201702076

    1. Burman D, Ghosh R, Santra S, Guha PK. Highly proton conducting MoS 2/graphene oxide nanocomposite based chemoresistive humidity sensor. Rsc Advances. 2016;6(62):57424-33.

    Doi: 10.1039/C6RA11961A

    1. Park SY, Kim YH, Lee SY, Sohn W, Lee JE, Shim Y-S, et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS 2 van der Waals composites. Journal of Materials Chemistry A. 2018;6(12):5016-24.

    Doi: 10.1039/C7TA11375G

    1. Park SY, Lee JE, Kim YH, Kim JJ, Shim Y-S, Kim SY, et al. Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sensors and Actuators B: Chemical. 2018;258:775-82.

    Doi: 10.1016/j.snb.2017.11.176

    1. Anichini C, Aliprandi A, Gali SM, Liscio F, Morandi V, Minoia A, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach. ACS Applied Materials & Interfaces. 2020;12(39):44017-25.

    Doi: 10.1021/acsami.0c11236

    1. Joghataei M, Ostovari F, Atabakhsh S, Tobeiha N. Heterogeneous ice nucleation by Graphene nanoparticles. Scientific Reports. 2020;10(1):9723.

    Doi: 10.1038/s41598-020-66714-2

    1. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv Mater. 2017;29(34):1702076.

    Doi: 10.1002/adma.201702076

    1. Ostovari F, Owji E, Iran HM. Humidity Sensor Based on Etched Optical Fibers Coated With Graphene Composite. 2021.

    Doi: 10.21203/rs.3.rs-558959/v1

    1. Li Y, Fan K, Ban H, Yang M. Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sensors and Actuators B: Chemical. 2016;222:151-8.

    Doi: 10.1016/j.snb.2015.08.052

    1. Sarwar S, Karamat S, Bhatti AS, Aydinol MK, Oral A, Hassan MU. Synthesis of Graphene-MoS2 composite based anode from oxides and their electrochemical behavior. Chemical Physics Letters. 2021;781:138969.

    Doi: 10.1016/j.cplett.2021.138969

    1. Murugan M, Kumar MR, Alsalme A, Alghamdi A, Jayavel R. Synthesis and property studies of molybdenum disulfide modified reduced graphene oxide (MoS2-rGO) nanocomposites for supercapacitor applications. Journal of Nanoscience and Nanotechnology. 2017;17(8):5469-74.

    Doi: 10.1166/jnn.2017.13845

    1. Sarma S, Mbule P, Ray SC. Layer-by-layer MoS2: GO composite thin films for optoelectronics device applications. Applied Surface Science. 2019;479:1118-23.

    Doi: 10.1016/j.apsusc.2019.02.165

    1. Yadav S, Chaudhary P, Uttam K, Varma A, Vashistha M, Yadav B. Facile synthesis of molybdenum disulfide (MoS2) quantum dots and its application in humidity sensing. Nanotechnology. 2019;30(29):295501.

    Doi: 10.1088/1361-6528/ab1569

    1. Thangappan R, Kalaiselvam S, Elayaperumal A, Jayavel R, Arivanandhan M, Karthikeyan R, et al. Graphene decorated with MoS 2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton transactions. 2016;45(6):2637-46.

    Doi: 10.1039/C5DT04832J

    1. Ding X, Huang Y, Li S, Zhang N, Wang J. 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Composites Part A: Applied Science and Manufacturing. 2016;90:424-32.

    Doi: 10.1016/j.compositesa.2016.08.006

    1. Fioravanti F, Martínez S, Delgado S, García G, Rodriguez JL, Tejera EP, et al. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochimica Acta. 2023;441:141781.

    Doi: 10.1016/j.electacta.2022.141781

    1. Liu H, Chen X, Deng L, Su X, Guo K, Zhu Z. Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta. 2016;206:184-91.

    Doi: 10.1016/j.electacta.2016.04.160

    1. Owji E, Mokhtari H, Ostovari F, Darazereshki B, Shakiba N. 2D materials coated on etched optical fibers as humidity sensor. Scientific Reports. 2021;11(1):1771.

    Doi: 10.1038/s41598-020-79563-w

    1. Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C. Three-dimensional MoS2/reduced Graphene Oxide nanosheets/Graphene quantum dots hybrids for high-performance room-temperature NO2 gas sensors. Nanomaterials. 2022;12(6):901.

    Doi: 10.3390/nano12060901

    1. Phan D-T, Chung G-S. P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si (111). Journal of Physics and Chemistry of Solids. 2013;74(11):1509-14.

    Doi: 10.1016/j.jpcs.2013.02.007

    1. Ruiz V, Fernández I, Carrasco P, Cabañero G, Grande HJ, Herrán J. Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors and Actuators B: Chemical. 2015;218:73-7.

    Doi: 10.1016/j.snb.2015.04.092

    1. Sett A, Biswas K, Majumder S, Datta A, Bhattacharyya TK. Graphene and Its Nanocomposites Based Humidity Sensors: Recent Trends and Challenges: IntechOpen; 2021.

    Doi: 10.5772/intechopen.98185

    1. Wang P, Wang X, Tan F, Zhang R. Residual Oxygen Effects on the Properties of MoS2 Thin Films Deposited at Different Temperatures by Magnetron Sputtering. Crystals. 2021;11(10):1183.

    Doi: 10.3390/cryst11101183

    1. Saqib M, Ali Khan S, Mutee Ur Rehman HM, Yang Y, Kim S, Rehman MM, et al. High-performance humidity sensor based on the graphene flower/zinc oxide composite. Nanomaterials. 2021;11(1):242.

    Doi: 10.3390/nano11010242

    1. Rathi K, Pal K. Impact of doping on GO: Fast response–recovery humidity sensor. ACS omega. 2017;2(3):842-51.

    Doi: 10.1021/acsomega.6b00399

    1. Meng W, Wu S, Wang X, Zhang D. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sensors and Actuators B: Chemical. 2020;315:128058.

    Doi: 10.1016/j.snb.2020.128058