بررسی خواص حسگری رطوبت بر پایه کامپوزیت اکسیدگرافن/ دی سولفید مولیبدن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه سمنان

2 گروه حالت جامد، دانشکده فیزیک، دانشگاه یزد، یزد

چکیده

نانومواد دوبعدی به دلیل ویژگی‌هایی همچون نسبت سطح به حجم بالا و جایگاه‌های فعال متعدد قابلیت‌های ویژه‌ای در حسگرهای گازی دارند. در این پژوهش نانوصفحات دی‌سولفید مولیبدن، گرافن اکسید و کامپوزیت آنها، بترتیب با روش‌های لایه‌برداری مایع، هامرز و سونوشیمیایی تهیه شدند. ویژگی‌های فیزیکی نانومواد تهیه شده با استفاده از میکروسکوپ الکترونی روبشی، پراش پرتو ایکس، طیف سنجی فروسرخ تبدیل فوریه و طیف سنجی رامان مورد بررسی قرار گرفت. سپس حسگر رطوبت بر پایه این مواد بر بستر Si/SiO2 و با استفاده از الکترودهای اهمی (سیم رسانا) ساخته شد. بدلیل نوع متفاوت حامل‌ها در اکسید گرافن و دی‌سولفید مولیبدن (بترتیب نوع p و نوع n) نحوه تغییرات جریان در درصدهای مختلف رطوبت در این دو حسگر متفاوت بدست آمد و رفتار حسگر بر پایه کامپوزیت این دو ماده بیشتر به رفتار گرافن مشابه بود. زمان بازیابی و زمان پاسخ‌دهی هر سه حسگر در محدوده 20 ثانیه اندازه‌گیری گردید. نتایج نشان داد که کامپوزیت اکسید گرافن و دی سولفید مولیبدن حسگری رطوبت بهتری نسبت به نانوصفحات دی سولفید مولیبدن دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of humidity sensing properties based on graphene oxide/molybdenum disulfide composite

نویسندگان [English]

  • Nafiseh Tobeiha 1
  • n. memarian 1
  • Fatemeh Ostovari 2
1 Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran
2 department of Physics, Faculty of Science, Yazd University, Yazd
چکیده [English]

Two-dimensional nanomaterials have special capabilities in gas sensors due to features such as high surface-to-volume ratio and multiple active sites. In this research, molybdenum disulfide nanosheets, graphene oxide and their composites were prepared by liquid exfoliation, Hammers, and sonochemical methods, respectively. Physical properties of the prepared nanomaterials were evaluated using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Then the humidity sensors were prepared based on these materials on Si/SiO2 substrates and using copper electrodes. Due to the different types of carriers in graphene oxide and molybdenum disulfide (p-type and n-type, respectively), the current changes in different moisture percentages were obtained differently for these two sensors, and the behavior of the sensor based on the composite of these two materials was more similar to the behavior of graphene. The recovery time and response time of all three sensors were measured within 20 seconds. The results showed that the composite of graphene oxide and molybdenum disulfide, has a better humidity sensor behaviour rather than molybdenum disulfide nanosheets.

کلیدواژه‌ها [English]

  • Humidity Sensors
  • GO
  • MoS2
  • GO/MoS2 Composite
  1.  

    1. Duan Z, Jiang Y, Tai H. Recent advances in humidity sensors for human body related humidity detection. Journal of Materials Chemistry C. 2021;9(42):14963-80.

    Doi:10.1039/D1TC04180K

    1. Rajkumar K, Kumar RR. Gas sensors based on two-dimensional materials and its mechanisms. Fundamentals and sensing applications of 2D materials: Elsevier; 2019. p. 205-58.

    Doi:10.1016/B978-0-08-102577-2.00006-3

    1. Sun L. Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering. 2019;27(10):2251-60.

    Doi:10.1016/j.cjche.2019.05.003

    1. Siaw W, Tsuji T, Manaf NA, Patah MA, Jan BM, editors. Synthesis of graphene oxide from industrial waste. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing.

    Doi: 10.1088/1757-899X/778/1/012050

    1. Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science. 2019;1(1):31-47.

    Doi:10.1016/j.nanoms.2019.02.004

    1. Thomas N, Mathew S, Nair KM, O'Dowd K, Forouzandeh P, Goswami A, et al. 2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability. 2021;13:100073.

    Doi: 10.1016/j.mtsust.2021.100073

    1. Dong H, Li D, Pang J, Zhang Q, Xie J, editors. Highly sensitive and fast-response humidity sensor based on saw resonator and mos 2 for human activity detection. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS); 2021: IEEE.

    Doi: 10.1109/MEMS51782.2021.9375370

    1. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Advanced materials. 2017;29(34):1702076.

    Doi: 10.1002/adma.201702076

    1. Burman D, Ghosh R, Santra S, Guha PK. Highly proton conducting MoS 2/graphene oxide nanocomposite based chemoresistive humidity sensor. Rsc Advances. 2016;6(62):57424-33.

    Doi: 10.1039/C6RA11961A

    1. Park SY, Kim YH, Lee SY, Sohn W, Lee JE, Shim Y-S, et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS 2 van der Waals composites. Journal of Materials Chemistry A. 2018;6(12):5016-24.

    Doi: 10.1039/C7TA11375G

    1. Park SY, Lee JE, Kim YH, Kim JJ, Shim Y-S, Kim SY, et al. Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sensors and Actuators B: Chemical. 2018;258:775-82.

    Doi: 10.1016/j.snb.2017.11.176

    1. Anichini C, Aliprandi A, Gali SM, Liscio F, Morandi V, Minoia A, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach. ACS Applied Materials & Interfaces. 2020;12(39):44017-25.

    Doi: 10.1021/acsami.0c11236

    1. Joghataei M, Ostovari F, Atabakhsh S, Tobeiha N. Heterogeneous ice nucleation by Graphene nanoparticles. Scientific Reports. 2020;10(1):9723.

    Doi: 10.1038/s41598-020-66714-2

    1. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv Mater. 2017;29(34):1702076.

    Doi: 10.1002/adma.201702076

    1. Ostovari F, Owji E, Iran HM. Humidity Sensor Based on Etched Optical Fibers Coated With Graphene Composite. 2021.

    Doi: 10.21203/rs.3.rs-558959/v1

    1. Li Y, Fan K, Ban H, Yang M. Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sensors and Actuators B: Chemical. 2016;222:151-8.

    Doi: 10.1016/j.snb.2015.08.052

    1. Sarwar S, Karamat S, Bhatti AS, Aydinol MK, Oral A, Hassan MU. Synthesis of Graphene-MoS2 composite based anode from oxides and their electrochemical behavior. Chemical Physics Letters. 2021;781:138969.

    Doi: 10.1016/j.cplett.2021.138969

    1. Murugan M, Kumar MR, Alsalme A, Alghamdi A, Jayavel R. Synthesis and property studies of molybdenum disulfide modified reduced graphene oxide (MoS2-rGO) nanocomposites for supercapacitor applications. Journal of Nanoscience and Nanotechnology. 2017;17(8):5469-74.

    Doi: 10.1166/jnn.2017.13845

    1. Sarma S, Mbule P, Ray SC. Layer-by-layer MoS2: GO composite thin films for optoelectronics device applications. Applied Surface Science. 2019;479:1118-23.

    Doi: 10.1016/j.apsusc.2019.02.165

    1. Yadav S, Chaudhary P, Uttam K, Varma A, Vashistha M, Yadav B. Facile synthesis of molybdenum disulfide (MoS2) quantum dots and its application in humidity sensing. Nanotechnology. 2019;30(29):295501.

    Doi: 10.1088/1361-6528/ab1569

    1. Thangappan R, Kalaiselvam S, Elayaperumal A, Jayavel R, Arivanandhan M, Karthikeyan R, et al. Graphene decorated with MoS 2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton transactions. 2016;45(6):2637-46.

    Doi: 10.1039/C5DT04832J

    1. Ding X, Huang Y, Li S, Zhang N, Wang J. 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Composites Part A: Applied Science and Manufacturing. 2016;90:424-32.

    Doi: 10.1016/j.compositesa.2016.08.006

    1. Fioravanti F, Martínez S, Delgado S, García G, Rodriguez JL, Tejera EP, et al. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochimica Acta. 2023;441:141781.

    Doi: 10.1016/j.electacta.2022.141781

    1. Liu H, Chen X, Deng L, Su X, Guo K, Zhu Z. Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta. 2016;206:184-91.

    Doi: 10.1016/j.electacta.2016.04.160

    1. Owji E, Mokhtari H, Ostovari F, Darazereshki B, Shakiba N. 2D materials coated on etched optical fibers as humidity sensor. Scientific Reports. 2021;11(1):1771.

    Doi: 10.1038/s41598-020-79563-w

    1. Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C. Three-dimensional MoS2/reduced Graphene Oxide nanosheets/Graphene quantum dots hybrids for high-performance room-temperature NO2 gas sensors. Nanomaterials. 2022;12(6):901.

    Doi: 10.3390/nano12060901

    1. Phan D-T, Chung G-S. P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si (111). Journal of Physics and Chemistry of Solids. 2013;74(11):1509-14.

    Doi: 10.1016/j.jpcs.2013.02.007

    1. Ruiz V, Fernández I, Carrasco P, Cabañero G, Grande HJ, Herrán J. Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors and Actuators B: Chemical. 2015;218:73-7.

    Doi: 10.1016/j.snb.2015.04.092

    1. Sett A, Biswas K, Majumder S, Datta A, Bhattacharyya TK. Graphene and Its Nanocomposites Based Humidity Sensors: Recent Trends and Challenges: IntechOpen; 2021.

    Doi: 10.5772/intechopen.98185

    1. Wang P, Wang X, Tan F, Zhang R. Residual Oxygen Effects on the Properties of MoS2 Thin Films Deposited at Different Temperatures by Magnetron Sputtering. Crystals. 2021;11(10):1183.

    Doi: 10.3390/cryst11101183

    1. Saqib M, Ali Khan S, Mutee Ur Rehman HM, Yang Y, Kim S, Rehman MM, et al. High-performance humidity sensor based on the graphene flower/zinc oxide composite. Nanomaterials. 2021;11(1):242.

    Doi: 10.3390/nano11010242

    1. Rathi K, Pal K. Impact of doping on GO: Fast response–recovery humidity sensor. ACS omega. 2017;2(3):842-51.

    Doi: 10.1021/acsomega.6b00399

    1. Meng W, Wu S, Wang X, Zhang D. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sensors and Actuators B: Chemical. 2020;315:128058.

    Doi: 10.1016/j.snb.2020.128058