یافته‌های جدید در کاربرد زیست‌حسگرها برای تشخیص سریع باکتری‌های بیماری‌زا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش نانوبیوتکنولوژی، گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 آزمایشگاه میکرو و نانوالکترونیک، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

عفونت‌های باکتریایی و گندخونی از مهم‌ترین و شایع‌ترین دلایل مرگ‌ومیر در سراسر جهان هستند. آمارها نشان می‌دهند، سالانه بیش از 18 میلیون نفر در سراسر جهان به این بیماری مبتلا می‌شوند و بین 28-50 درصد افراد جان خود را از دست می‌دهند. مطالعات اخیر نشان می‌دهند تشخیص به موقع و تجویز آنتی‌بیوتیک مناسب از جمله مهم‌ترین اقدامات اولیه برای درمان گندخونی هستند؛ با وجود در دسترس بودن درمان‌های آنتی‌بیوتیکی برای عفونت‌های باکتریایی، تشخیص این عفونت‌ها در بسیاری از موارد اشتباه یا با تاخیر صورت می‌گیرد. از جمله روش‌های رایج شناسایی عفونت‌های باکتریایی می‌توان به کشت نمونه‌، روش‌های برپایه واکنش زنجیره‌ای پلیمراز و روش‌های ایمنی‌شناسی اشاره کرد؛ اما این روش‌ها به تجهیزات تخصصی نیاز داشته، اغلب زمان‌بر و هزینه‌بر بوده و در بسیاری موارد از دقت مناسب برخوردار نیستند. بنابراین به‌کارگیری روش‌‌های نوین تشخیص مانند زیست‌حسگرها به ویژه در موارد همه‌گیری و مناطق محروم اهمیت ویژه‌ای دارد. مقاله مروری حاضر به بررسی لزوم استفاده از زیست‌حسگرها برای تشخیص باکتری‌های بیماری‌زا پرداخته است. تمرکز اصلی این مقاله بررسی زیست‌حسگرهای تشخیص سلول کامل باکتری و بدون نیاز به پردازش نمونه قرار دارد و پیشرفت‌های اخیر در این حوزه مورد بحث قرار داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Recent progress in the application of biosensors for rapid detection of pathogenic bacteria

نویسندگان [English]

  • Hale Alvandi 1
  • Ali Hossein Rezayan 1
  • Hassan Hajghassem 2
1 Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
2 MEMS & NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
چکیده [English]

Bacterial infections and sepsis are among the most important and common causes of death worldwide. Statistics show that more than 18 million people worldwide get sepsis annually, and 28-50% of them die. Recent studies show that timely diagnosis and appropriate antibiotic prescription are among the most important initial measures for sepsis treatment; Despite the availability of antibiotic treatments for bacterial infections, the diagnosis of these infections is often misdiagnosed or delayed. Among the common methods of identifying bacterial infections are sample culturing, PCR-based, and immunological methods; But these methods require specialized equipment and are often time-consuming and expensive, and in many cases, they do not have proper accuracy. Therefore, using new diagnostic methods such as biosensors is especially important in cases of epidemics and deprived areas. This review article examines the necessity of using biosensors to detect pathogenic bacteria. The main focus of this paper is the review of biosensors for the detection of whole bacterial cells without the need for sample processing, and the recent developments in this field are discussed.

کلیدواژه‌ها [English]

  • Electrochemical biosensors
  • Optical biosensors
  • Point of care device
  • Sepsis
  1. S.P. Shashikumar, M.D. Stanley, I. Sadiq, Q. Li, A. Holder, G.D. Clifford,S. Nemati,Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics. Journal of electrocardiology (2017) 50:739-743, doi:10.1016/j.jelectrocard.2017.08.013.
  2. J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui,D.S. Kohane,Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano letters (2014) 14:1-5, doi:10.1021/nl3047305.
  3. A.C. Graziani, M.I. Stets, A.L.K. Lopes, P.H.C. Schluga, S. Marton, I.M. Ferreira, A.S.R. De Andrade, M.A. Krieger,J. Cardoso,High efficiency binding aptamers for a wide range of bacterial sepsis agents. Journal of microbiology and biotechnology (2017) 27:838-843, doi:10.4014/jmb.1611.11004.
  4. A. Sutherland, M. Thomas, R.A. Brandon, R.B. Brandon, J. Lipman, B. Tang, A. McLean, R. Pascoe, G. Price,T. Nguyen,Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Critical care (2011) 15:1-11, doi:10.1186/cc10274.
  5. N. Alizadeh, M.Y. Memar, S.R. Moaddab,H.S. Kafil,Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomedicine & Pharmacotherapy (2017) 93:737-745, doi:10.1016/j.biopha.2017.07.011.
  6. F. Chinowaita, W. Chaka, T.K. Nyazika, T.C. Maboreke, E. Tizauone, P. Mapondera, I. Chitsike, A.Z. Cakana,R.T. Mavenyengwa,Sepsis in cancer patients residing in Zimbabwe: spectrum of bacterial and fungal aetiologies and their antimicrobial susceptibility patterns. BMC infectious diseases (2020) 20:1-9, doi:10.21203/rs.2.10948/v2.
  7. A.L. Shane, P.J. Sánchez,B.J. Stoll,Neonatal sepsis. The lancet (2017) 390:1770-1780, doi:10.1016/S0140-6736(17)31002-4.
  8. J. Calvert, J. Hoffman, C. Barton, D. Shimabukuro, M. Ries, U. Chettipally, Y. Kerem, M. Jay, S. Mataraso,R. Das,Cost and mortality impact of an algorithm-driven sepsis prediction system. Journal of medical economics (2017) 20:646-651, doi:10.1080/13696998.2017.1307203.
  9. A. Das, P. Kumar,S. Swain,Recent advances in biosensor based endotoxin detection. Biosensors and Bioelectronics (2014) 51:62-75, doi:10.1016/j.bios.2013.07.020.
  10. H. Shen, J. Wang, H. Liu, Z. Li, F. Jiang, F.-B. Wang,Q. Yuan,Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS applied materials & interfaces (2016) 8:19371-19378, doi:10.1021/acsami.6b06671.
  11. Y. Liu, J.-h. Hou, Q. Li, K.-j. Chen, S.-N. Wang,J.-m. Wang,Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis. Springerplus (2016) 5:1-10, doi:10.1186/s40064-016-3591-5.
  12. A. Jagannath, H. Cong, J. Hassan, G. Gonzalez, M.D. Gilchrist,N. Zhang,Pathogen detection on microfluidic platforms: Recent advances, challenges, and prospects. Biosensors and Bioelectronics: X (2022) 100134, doi:10.1016/j.biosx.2022.100134.
  13. S. Roy, F. Arshad, S. Eissa, M. Safavieh, S.G. Alattas, M.U. Ahmed,M. Zourob,Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sensors & Diagnostics (2022) 1:87-105, doi:10.1039/D1SD00017A.
  14. A. Ahmed, J.V. Rushworth, N.A. Hirst,P.A. Millner,Biosensors for whole-cell bacterial detection. Clinical microbiology reviews (2014) 27:631-646, doi:10.1128/CMR.00120-13.
  15. M.S. Verma, J.L. Rogowski, L. Jones,F.X. Gu,Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnology advances (2015) 33:666-680, doi:10.1016/j.biotechadv.2015.03.003.
  16. F. Mi, M. Guan, C. Hu, F. Peng, S. Sun,X. Wang,Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review. Analyst (2021) 146:429-443, doi:10.1039/D0AN01459A.
  17. A. Parihar, P. Ranjan, S.K. Sanghi, A.K. Srivastava,R. Khan,Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Applied Bio Materials (2020) 3:7326-7343, doi:10.1021/acsabm.0c01083.
  18. S.M. Yoo,S.Y. Lee,Optical biosensors for the detection of pathogenic microorganisms. Trends in biotechnology (2016) 34:7-25, doi:10.1016/j.tibtech.2015.09.012.
  19. R. Singh, M.D. Mukherjee, G. Sumana, R.K. Gupta, S. Sood,B. Malhotra,Biosensors for pathogen detection: A smart approach towards clinical diagnosis. Sensors and Actuators B: Chemical (2014) 197:385-404, doi:10.1016/j.snb.2014.03.005.
  20. C. Parolo,A. Merkoçi,based nanobiosensors for diagnostics. Chemical Society Reviews (2013) 42:450-457, doi:10.1039/C2CS35255A.
  21. S. Hosseinniya, A.H. Rezayan, F. Ghasemi, M. Malekmohamadi, R.A. Taheri, M. Hosseini,H. Alvandi,Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP. Analytica Chimica Acta (2023) 1237:340580, doi:10.1016/j.aca.2022.340580.
  22. A. Firoozbakhtian, A.H. Rezayan, H. Hajghassem, F. Rahimi, M.F. Ghazani, M. Kalantar,A. Mohamadsharifi,Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP. ACS omega (2022) 7:7341-7349, doi:10.1021/acsomega.1c07271.
  23. M. Mahyari, S.E. Hooshmand, H. Sepahvand, S. Gholami, A.H. Rezayan,M.A. Zarei,Gold nanoparticles anchored onto covalent poly deep eutectic solvent functionalized graphene: An electrochemical aptasensor for the detection of C-reactive protein. Materials Chemistry and Physics (2021) 269:124730, doi:10.1016/j.matchemphys.2021.124730.
  24. S. Mohammadi, F. Rahimi, A. Rezayan, A. Abouei Mehrizi,M. Sedighi,CRP and TNF-α Detection using Porous Silicon Substrate Based on Reflectometric Interference Fourier Transform Spectroscopy. Journal of Advanced Materials in Engineering (Esteghlal) (2023) 41:1-12, doi:10.47176/jame.41.3.24551.
  25. D. Li, L. Liu, Q. Huang, T. Tong, Y. Zhou, Z. Li, Q. Bai, H. Liang,L. Chen,Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World Journal of Microbiology and Biotechnology (2021) 37:1-20, doi:s11274-021-03002-9.
  26. M. Sovizi,M. Aliannezhadi,Highly sensitive asymmetric and symmetric cancer sensors with ultra-high-quality factor and resolution power. Scientific Reports (2023) 13:12251,
  27. E. Naranji, M. Aliannezhadi,S. Panahibakhsh,Surface structured silver-copper bimetallic nanoparticles by irradiation of excimer laser pulses to bilayer thin films. Physica Scripta (2023) 98:105529,
  28. M. Aliannezhadi, M.H. Mozaffari,F. Amirjan,Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing. Photonics and Nanostructures - Fundamentals and Applications (2023) 53:101108, doi:https://doi.org/10.1016/j.photonics.2023.101108.
  29. A. Bagheri pebdeni,M. Hosseini,Fast and selective whole cell detection of Staphylococcus aureus bacteria in food samples by paper based colorimetric nanobiosensor using peroxidase-like catalytic activity of DNA-Au/Pt bimetallic nanoclusters. Microchemical Journal (2020) 159:105475, doi:10.1016/j.microc.2020.105475.
  30. X. Yang, Y. Zhong, D. Wang,Z. Lu,A simple colorimetric method for viable bacteria detection based on cell counting Kit-8. Analytical Methods (2021) 13:5211-5215, doi:10.1039/D1AY01624E.
  31. F. Bahavarnia, M. Hasanzadeh, D. Sadighbayan,F. Seidi,Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics (2022) 7:175, doi:10.3390/biomimetics7040175.
  32. M. Srisa-Art, K.E. Boehle, B.J. Geiss,C.S. Henry,Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Analytical chemistry (2018) 90:1035-1043, doi:10.1021/acs.analchem.7b04628.
  33. L. Zheng, P. Qi,D. Zhang,Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sensors and Actuators B: Chemical (2019) 286:206-213, doi:10.1016/j.snb.2019.01.147.
  34. M. Yu, H. Wang, F. Fu, L. Li, J. Li, G. Li, Y. Song, M.T. Swihart,E. Song,Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin–Gold Nanoclusters and Aptamer–Gold Nanoparticles. Analytical chemistry (2017) 89:4085-4090, doi:10.1021/acs.analchem.6b04958.
  35. J. Qiao, X. Meng, Y. Sun, Q. Li, R. Zhao, Y. Zhang, J. Wang,Z. Yi,Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. Journal of microbiological methods (2018) 153:92-98, doi:10.1016/j.mimet.2018.09.011.
  36. S.M. Tripathi, W.J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba,M. Zourob,Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosensors and Bioelectronics (2012) 35:308-312, doi:10.1016/j.bios.2012.03.006.
  37. O. Tokel, U.H. Yildiz, F. Inci, N.G. Durmus, O.O. Ekiz, B. Turker, C. Cetin, S. Rao, K. Sridhar,N. Natarajan,Portable microfluidic integrated plasmonic platform for pathogen detection. Scientific reports (2015) 5:1-9, doi:10.1038/srep09152.
  38. R.A. Taheri, A.H. Rezayan, F. Rahimi, J. Mohammadnejad,M. Kamali,Evaluating the potential of an antibody against recombinant OmpW antigen in detection of Vibrio cholerae by surface plasmon resonance (SPR) biosensor. Plasmonics (2017) 12:1493-1504, doi:10.1007/s11468-016-0411-2.
  39. R.A. Taheri, A.H. Rezayan, F. Rahimi, J. Mohammadnejad,M. Kamali,Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosensors and Bioelectronics (2016) 86:484-488, doi:10.1016/j.bios.2016.07.006.
  40. Y. Wang, W. Knoll,J. Dostalek,Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Analytical chemistry (2012) 84:8345-8350, doi:10.1021/ac301904x.
  41. N. Prabhakar, K. Arora, S.K. Arya, P.R. Solanki, M. Iwamoto, H. Singh,B. Malhotra,Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst (2008) 133:1587-1592, doi:10.1039/B808225A.
  42. J. Wang, Y. Luo, B. Zhang, M. Chen, J. Huang, K. Zhang, W. Gao, W. Fu, T. Jiang,P. Liao,Rapid label-free identification of mixed bacterial infections by surface plasmon resonance. Journal of Translational Medicine (2011) 9:1-9, doi:10.1186/1479-5876-9-85.
  43. A. Singh, D. Arutyunov, M.T. McDermott, C.M. Szymanski,S. Evoy,Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst (2011) 136:4780-4786, doi:10.1039/C1AN15547D.
  44. X. Zhou, Z. Hu, D. Yang, S. Xie, Z. Jiang, R. Niessner, C. Haisch, H. Zhou,P. Sun,Bacteria detection: from powerful SERS to its advanced compatible techniques. Advanced Science (2020) 7:2001739, doi:10.1002/advs.202001739.
  45. C. Wang, M.M. Meloni, X. Wu, M. Zhuo, T. He, J. Wang, C. Wang,P. Dong,Magnetic plasmonic particles for SERS-based bacteria sensing: A review. AIP advances (2019) 9:010701, doi:10.1063/1.5050858.
  46. H. Zhou, D. Yang, N.P. Ivleva, N.E. Mircescu, R. Niessner,C. Haisch,SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical chemistry (2014) 86:1525-1533, doi:10.1021/ac402935p.
  47. H. Kearns, R. Goodacre, L.E. Jamieson, D. Graham,K. Faulds,SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Analytical chemistry (2017) 89:12666-12673, doi:10.1021/acs.analchem.7b02653.
  48. J. Arlett, E. Myers,M. Roukes,Comparative advantages of mechanical biosensors. Nature nanotechnology (2011) 6:203-215, doi:10.1038/nnano.2011.44.
  49. X. Guo, C.-S. Lin, S.-H. Chen, R. Ye,V.C. Wu,A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosensors and Bioelectronics (2012) 38:177-183, doi:10.1016/j.bios.2012.05.024.
  50. R. Hao, D. Wang, G. Zuo, H. Wei, R. Yang, Z. Zhang, Z. Cheng, Y. Guo, Z. Cui,Y. Zhou,Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosensors and Bioelectronics (2009) 24:1330-1335, doi:10.1016/j.bios.2008.07.071.
  51. F. Salam, Y. Uludag,I.E. Tothill,Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta (2013) 115:761-767, doi:10.1016/j.talanta.2013.06.034.
  52. M.E. Yakovleva, A.P. Moran, G.R. Safina, T. Wadström,B. Danielsson,Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique. Analytica Chimica Acta (2011) 694:1-5, doi:10.1016/j.aca.2011.03.014.
  53. G. Bayramoglu, V.C. Ozalp, M. Oztekin,M.Y. Arica,Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta (2019) 200:263-271, doi:10.1016/j.talanta.2019.03.048.
  54. E. Mirsadoughi, A.B. Pebdeni,M. Hosseini,Sensitive colorimetric aptasensor based on peroxidase-like activity of ZrPr-MOF to detect Salmonella Typhimurium in water and milk. Food Control (2023) 146:109500, doi:10.1016/j.foodcont.2022.109500.
  55. Y. Liu, J. Wang, X. Song, K. Xu, H. Chen, C. Zhao,J. Li,Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Microchimica Acta (2018) 185:1-7, doi:10.1007/s00604-018-2896-1.
  56. Z. Wu, D. He, B. Cui,Z. Jin,A bimodal (SERS and colorimetric) aptasensor for the detection of Pseudomonas aeruginosa. Microchimica Acta (2018) 185:1-7, doi:10.1007/s00604-018-3073-2.
  57. R. Das, A. Dhiman, A. Kapil, V. Bansal,T.K. Sharma,Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Analytical and bioanalytical chemistry (2019) 411:1229-1238, doi:10.1007/s00216-018-1555-z.
  58. N. Amin, A.S. Torralba, R. Álvarez-Diduk, A. Afkhami,A. Merkoçi,Lab in a tube: point-of-care detection of Escherichia coli. Analytical chemistry (2020) 92:4209-4216, doi:10.1021/acs.analchem.9b04369.
  59. Z. Dehghani, J. Mohammadnejad, M. Hosseini, B. bakhshi,A.H. Rezayan,Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry (2020) 309:125690, doi:10.1016/j.foodchem.2019.125690.
  60. D. Cheng, M. Yu, F. Fu, W. Han, G. Li, J. Xie, Y. Song, M.T. Swihart,E. Song,Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Analytical chemistry (2016) 88:820-825, doi:10.1021/acs.analchem.5b03320.
  61. N.J. Sharp, I.J. Molineux, M.A. Page,D.A. Schofield,Rapid detection of viable Bacillus anthracis spores in environmental samples by using engineered reporter phages. Applied and Environmental Microbiology (2016) 82:2380-2387, doi:10.1128/AEM.03772-15.
  62. S. Wang, L. Zheng, G. Cai, N. Liu, M. Liao, Y. Li, X. Zhang,J. Lin,A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosensors and Bioelectronics (2019) 140:111333, doi:10.1016/j.bios.2019.111333.
  63. N. Idil, M. Bakhshpour, I. Perçin,B. Mattiasson,Whole cell recognition of staphylococcus aureus using biomimetic SPR sensors. Biosensors (2021) 11:140, doi:10.3390/bios11050140.
  64. J.-Y. Ahn, K.-A. Lee, M.-J. Lee, S.S. Sekhon, S.-K. Rhee, S.-J. Cho, J.H. Ko, L. Lee, J. Han,S.Y. Kim,Surface plasmon resonance aptamer biosensor for discriminating pathogenic bacteria Vibrio parahaemolyticus. Journal of nanoscience and nanotechnology (2018) 18:1599-1605, doi:10.1166/jnn.2018.14212.
  65. V. Nanduri, A.K. Bhunia, S.-I. Tu, G.C. Paoli,J.D. Brewster,SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosensors and Bioelectronics (2007) 23:248-252, doi:10.1016/j.bios.2007.04.007.
  66. Y. Pang, N. Wan, L. Shi, C. Wang, Z. Sun, R. Xiao,S. Wang,Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta (2019) 1077:288-296, doi:10.1016/j.aca.2019.05.059.
  67. S. Díaz-Amaya, L.-K. Lin, A.J. Deering,L.A. Stanciu,Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157: H7. Analytica chimica acta (2019) 1081:146-156, doi:10.1016/j.aca.2019.07.028.
  68. S.-M. You, K. Luo, J.-Y. Jung, K.-B. Jeong, E.-S. Lee, M.-H. Oh,Y.-R. Kim,Gold nanoparticle-coated starch magnetic beads for the separation, concentration, and SERS-based detection of E. coli O157: H7. ACS applied materials & interfaces (2020) 12:18292-18300, doi:10.1021/acsami.0c00418.
  69. M. Eryılmaz, E.A. Soykut, D. Çetin, İ.H. Boyacı, Z. Suludere,U. Tamer,SERS-based rapid assay for sensitive detection of Group A Streptococcus by evaluation of the swab sampling technique. Analyst (2019) 144:3573-3580, doi:10.1039/C9AN00173E.
  70. H.Y. Lin, C.H. Huang, W.H. Hsieh, L.H. Liu, Y.C. Lin, C.C. Chu, S.T. Wang, I.T. Kuo, L.K. Chau,C.Y. Yang,On‐line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small (2014) 10:4700-4710, doi:10.1002/smll.201401526.
  71. K.R. Buchapudi, X. Huang, X. Yang, H.-F. Ji,T. Thundat,Microcantilever biosensors for chemicals and bioorganisms. Analyst (2011) 136:1539-1556, doi:10.1039/C0AN01007C.
  72. T. Thundat, P. Oden,R. Warmack,Microcantilever sensors. Microscale Thermophysical Engineering (1997) 1:185-199, doi:10.1080/108939597200214.
  73. U. Sungkanak, A. Sappat, A. Wisitsoraat, C. Promptmas,A. Tuantranont,Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosensors and Bioelectronics (2010) 26:784-789, doi:10.1016/j.bios.2010.06.024.
  74. G.A. Campbell,R. Mutharasan,Detection of pathogen Escherichia coli O157: H7 using self-excited PZT-glass microcantilevers. Biosensors and Bioelectronics (2005) 21:462-473, doi:10.1016/j.bios.2004.11.009.
  75. Q. Zhu, W.Y. Shih,W.-H. Shih,In situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any dipping depth. Biosensors and Bioelectronics (2007) 22:3132-3138, doi:10.1016/j.bios.2007.02.005.
  76. H. Sharma,R. Mutharasan,Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosensors and Bioelectronics (2013) 45:158-162, doi:10.1016/j.bios.2013.01.068.
  77. G.A. Zelada-Guillén, J.L. Sebastián-Avila, P. Blondeau, J. Riu,F.X. Rius,Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosensors and bioelectronics (2012) 31:226-232, doi:10.1016/j.bios.2011.10.021.
  78. J. Wang,Glucose biosensors: 40 years of advances and challenges. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis (2001) 13:983-988, doi:10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-%23.
  79. O. Laczka, J.-M. Maesa, N. Godino, J. del Campo, M. Fougt-Hansen, J.P. Kutter, D. Snakenborg, F.-X. Muñoz-Pascual,E. Baldrich,Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosensors and Bioelectronics (2011) 26:3633-3640, doi:10.1016/j.bios.2011.02.019.
  80. C.-X. Zhou, R.-J. Mo, Z.-M. Chen, J. Wang, G.-Z. Shen, Y.-P. Li, Q.-G. Quan, Y. Liu,C.-Y. Li,Quantitative label-free Listeria analysis based on aptamer modified nanoporous sensor. ACS Sensors (2016) 1:965-969, doi:10.1021/acssensors.6b00333.
  81. L. Mehrannia, B. Khalilzadeh, R. Rahbarghazi, M. Milani, G. Saydan Kanberoglu, H. Yousefi,N. Erk,Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. Biosensors (2023) 13:216, doi:10.3390/bios13020216.
  82. J.S. Daniels,N. Pourmand,Label‐free impedance biosensors: Opportunities and challenges. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis (2007) 19:1239-1257, doi:10.1002/elan.200603855.
  83. J. Huang, G. Yang, W. Meng, L. Wu,A. Zhu,An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients’ stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosensors and Bioelectronics (2010) 25:1204-1211, doi:10.1016/j.bios.2009.10.036.
  84. A. Ahmed, J.V. Rushworth, J.D. Wright,P.A. Millner,Novel impedimetric immunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva. Analytical chemistry (2013) 85:12118-12125, doi:10.1021/ac403253j.
  85. M. Kaisti,Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics (2017) 98:437-448, doi:10.1016/j.bios.2017.07.010.
  86. A. Poghossian,M.J. Schöning,Recent progress in silicon-based biologically sensitive field-effect devices. Current Opinion in Electrochemistry (2021) 29:100811, doi:10.1016/j.coelec.2021.100811.
  87. T. Wadhera, D. Kakkar, G. Wadhwa,B. Raj,Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials (2019) 48:7635-7646, doi:10.1007/s11664-019-07705-6.
  88. M.L. Coluccio, S.A. Pullano, M.F.M. Vismara, N. Coppedè, G. Perozziello, P. Candeloro, F. Gentile,N. Malara,Emerging designs of electronic devices in biomedicine. Micromachines (2020) 11:123, doi:10.3390/mi11020123.
  89. R.B. Jamal, S. Shipovskov,E.E. Ferapontova,Electrochemical immuno-and aptamer-based assays for bacteria: Pros and cons over traditional detection schemes. Sensors (2020) 20:5561, doi:10.3390/s20195561.
  90. C. Wang, M. Liu, Z. Wang, S. Li, Y. Deng,N. He,Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today (2021) 37:101092, doi:10.1016/j.nantod.2021.101092.
  91. D. Reddy, L.F. Register, G.D. Carpenter,S.K. Banerjee,Graphene field-effect transistors. Journal of Physics D: Applied Physics (2011) 44:313001, doi:10.1088/0022-3727/44/31/313001.
  92. K.H. Kim, S.J. Park, C.S. Park, S.E. Seo, J. Lee, J. Kim, S.H. Lee, S. Lee, J.-S. Kim,C.-M. Ryu,High-performance portable graphene field-effect transistor device for detecting Gram-positive and-negative bacteria. Biosensors and Bioelectronics (2020) 167:112514, doi:10.1016/j.bios.2020.112514.
  93. Y. Huang, X. Dong, Y. Liu, L.-J. Li,P. Chen,Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry (2011) 21:12358-12362, doi:10.1039/C1JM11436K.
  94. R.A. Villamizar, A. Maroto, F.X. Rius, I. Inza,M.J. Figueras,Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosensors and Bioelectronics (2008) 24:279-283, doi:10.1016/j.bios.2008.03.046.
  95. E. Cesewski,B.N. Johnson,Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics (2020) 159:112214, doi:10.1016/j.bios.2020.112214.
  96. L.Y. Yeo, H.C. Chang, P.P. Chan,J.R. Friend,Microfluidic devices for bioapplications. small (2011) 7:12-48, doi:10.1002/smll.201000946.
  97. H. Jafari, M. Amiri, E. Abdi, S.L. Navid, J. Bouckaert, R. Jijie, R. Boukherroub,S. Szunerits,Entrapment of uropathogenic E. coli cells into ultra-thin sol-gel matrices on gold thin films: A low cost alternative for impedimetric bacteria sensing. Biosensors and Bioelectronics (2019) 124:161-166, doi:10.1016/j.bios.2018.10.029.
  98. S.S. Zarei, S. Soleimanian-Zad,A.A. Ensafi,An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Microchimica Acta (2018) 185:1-9, doi:10.1007/s00604-018-3075-0.
  99. J. Liu, I. Jasim, Z. Shen, L. Zhao, M. Dweik, S. Zhang,M. Almasri,A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS One (2019) 14:e0216873, doi:10.1371/journal.pone.0216873.
  100. M.S. Chiriacò, I. Parlangeli, F. Sirsi, P. Poltronieri,E. Primiceri,Impedance sensing platform for detection of the food pathogen listeria monocytogenes. Electronics (2018) 7:347, doi:10.3390/electronics7120347.
  101. D. Lu, G. Pang,J. Xie,A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/GNPs-thionine/chitosan. Biomedical microdevices (2017) 19:1-10, doi:10.1007/s10544-017-0149-4.
  102. I.A. Quintela,V.C. Wu,A sandwich-type bacteriophage-based amperometric biosensor for the detection of Shiga toxin-producing Escherichia coli serogroups in complex matrices. RSC advances (2020) 10:35765-35775, doi:10.1039/D0RA06223E.
  103. N.F. Silva, C.M. Almeida, J.M. Magalhães, M.P. Gonçalves, C. Freire,C. Delerue-Matos,Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics (2019) 141:111317, doi:10.1016/j.bios.2019.111317.
  104. B. Thakur, G. Zhou, J. Chang, H. Pu, B. Jin, X. Sui, X. Yuan, C.-H. Yang, M. Magruder,J. Chen,Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosensors and Bioelectronics (2018) 110:16-22, doi:10.1016/j.bios.2018.03.014.
  105. A. Moudgil, S. Singh, N. Mishra, P. Mishra,S. Das,MoS2/TiO2 Hybrid Nanostructure‐Based Field‐Effect Transistor for Highly Sensitive, Selective, and Rapid Detection of Gram‐Positive Bacteria. Advanced Materials Technologies (2020) 5:1900615, doi:10.1002/admt.201900615.
  106. C.-Y. Hsieh,N.-T. Huang,A proton-selective membrane (PSM)-deposited dual-gate ion-sensitive field-effect transistor (DG-ISFET) integrating a microchamber-embedded filter membrane for bacterial enrichment and antimicrobial susceptibility test. Sensors and Actuators B: Chemical (2022) 359:131580, doi:10.1016/j.snb.2022.131580.
  107. M. Mathelié-Guinlet, T. Cohen-Bouhacina, I. Gammoudi, A. Martin, L. Beven, M.-H. Delville,C. Grauby-Heywang,Silica nanoparticles-assisted electrochemical biosensor for the rapid, sensitive and specific detection of Escherichia coli. Sensors and Actuators B: Chemical (2019) 292:314-320, doi:10.1016/j.snb.2019.03.144.
  108. X. Zhang, J. Shen, H. Ma, Y. Jiang, C. Huang, E. Han, B. Yao,Y. He,Optimized dendrimer-encapsulated gold nanoparticles and enhanced carbon nanotube nanoprobes for amplified electrochemical immunoassay of E. coli in dairy product based on enzymatically induced deposition of polyaniline. Biosensors and Bioelectronics (2016) 80:666-673, doi:10.1016/j.bios.2016.02.043.
  109. J. Teng, Y. Ye, L. Yao, C. Yan, K. Cheng, F. Xue, D. Pan, B. Li,W. Chen,Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Microchimica Acta (2017) 184:3477-3485, doi:10.1007/s00604-017-2383-0.
  110. M. Divagar, R. Sriramprabha, S. Sornambikai, N. Ponpandian,C. Viswanathan,Surface imprinted Ag decorated MnO2 thin film electrodes for the synergic electrochemical detection of bacterial pathogens. Journal of the Electrochemical Society (2019) 166:G1, doi:10.1149/2.0711902jes.