سنتز و مشخصه‌یابی نانوکامپوزیت ZnO/CeO2/SiO2 به روش‌ سل- ژل برای ذخیره‌سازی الکتروشیمیایی هیدروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده نانوفناوری، پردیس علوم و فناوری‌های نوین، دانشگاه سمنان، سمنان، ایران

2 گروه نانوشیمی، دانشکده نانوفناوری، پردیس علوم و فناوری‌های نوین، دانشگاه سمنان، سمنان، ایران

چکیده

در این مطالعه، نانوساختارهای SiO2، CeO2/SiO2، ZnO/SiO2 و ZnO/CeO2/SiO2 با روش سل- ژل به دو شکل با استفاده از پیش‌ماده‌های تترااتیل اورتوسیلیکات (TEOS)، سریم نیترات و روی نیترات سنتز شدند. در روش اول، نمک‌ها پس از اضافه شدن TEOS و در روش دوم پیش از اضافه شدن TEOS اضافه شدند. با تفاوت در ترتیب اضافه شدن مواد، پراکندگی مواد در کامپوزیت‌ها و اندازه‌ی ذرات تغییر محسوسی داشتند. بهترین شرایط از نظر ترکیب مواد و اندازه‌ی ذرات برای نانوکامپوزیت ZnO/CeO2/SiO2 سنتز شده به روش دوم بود. آنالیز‌های EDS، XRD، FT-IR، FESEM و BET برای نمونه‌ها جهت صحت تشکیل نانوساختار مورد انتظار انجام شد. در نهایت، نانوکامپوزیت ZnO/CeO2/SiO2 سنتز شده به روش دوم برای تعیین ظرفیت ذخیره‌سازی الکتروشیمیایی هیدروژن مورد ارزیابی قرار گرفت. با روش کرونوپتانسیومتری ظرفیت ذخیره‌سازی هیدروژن آن mAh/g 75/708 به ثبت رسید که نسبت به ظرفیت‌های گزارش شده‌ مقدار قابل توجهی است. مقایسه‌ی این عدد با میزان ظرفیت ذخیره‌سازی نانوساختار‌های سیلیکا و سریا نیز نشان دهنده‌ی تأثیر‌ سازنده‌ی این مواد بر روی هم است. مطابق با نتایج، روش دوم سنتز روشی مناسب‌تر برای ساخت این نانومواد جهت ذخیره‌سازی الکتروشیمیایی هیدروژن می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and characterization of ZnO/CeO2/SiO2 nanostructures by sol-gel method for electrochemical hydrogen storage

نویسندگان [English]

  • Mehdi Mousavi-Kamazani 1
  • Amir Hossein Reihani 2
1 Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
2 Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
چکیده [English]

In this study, SiO2, CeO2/SiO2, ZnO/SiO2, and ZnO/CeO2/SiO2 nanostructures were synthesized by sol-gel method in two ways using TEOS, cerium nitrate, and zinc nitrate as precursors. In the first method, salts were added at the end, but in the second method, TEOS was added at the end. With the difference in the order of adding materials, the distribution of materials in the composites and the size of the particles changed significantly. The best conditions in terms of material composition and particle size were for the ZnO/CeO2/SiO2 nanocomposite synthesized by the second method. EDS, FT-IR, FESEM, BET, and XRD analyzes were performed for the samples to confirm the formation of the expected nanostructure. Finally, the ZnO/CeO2/SiO2 nanocomposite synthesized by the second method was evaluated to determine the electrochemical hydrogen storage capacity. With the chronopotentiometric method, its hydrogen storage capacity was recorded as 708.75 mAh/g, which is a significant amount compared to the reported capacities. The comparison of this number with the storage capacity of silica and ceria nanostructures also shows the constructive effect of these materials on each other. According to the results, the second synthesis method is a more suitable method for making these nanomaterials for electrochemical hydrogen storage.

کلیدواژه‌ها [English]

  • Nanostructure
  • Sol-gel
  • Zinc/Ceria/Silica
  • Hydrogen storage
  • Chronopotentiometry
[1] Sharma S, Basu S, Shetti NP, Aminabhavi TM. Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Science of The Total Environment. 2020; 713(15): 136-633.
https://doi.org/10.1016/j.scitotenv.2020.136633
[2] Schlapbach L, Zuttel A. Hydrogen-Storage materials for moile application. Nature. 2001; 414(6861): 353-358.
[3] Pasquini L. Design of nanomaterials for hydrogen storage. Energies. 2020; 13(13): 3503-3531.
https://doi.org/10.3390/en13133503
[4] Singh R, Ataee A, Gautam S. Nanomaterials in Advancement of hydrogen storage. Heliyon. 2020; 6(7): 4487-4498.
https://doi.org/10.1016/j.heliyon.2020.e04487
[5] Kaur M, Pal K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. Journal of Energy Storage. 2019; 23: 234-249.
https://doi.org/10.1016/j.est.2019.03.020
[6] Pareek A, Dom R, Gupta J, Chandran J, Adepu V, Borse P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies. 2020; 3: 319-327.
https://doi.org/10.1016/j.mset.2019.12.002
[7] Zou J, Han N, Yan J, Feng Q, Wang Y, Zhao Z, Wang H. Electrochemical compression technologies for high-pressure hydrogen: current status, challenges and perspective. Electrochemical Energy Reviews. 2020; 3(4): 1-40.
https://doi.org/10.1007/s41918-020-00077-0
[8] Eftekhari A, Fang B. Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. International Journal of Hydrogen Energy. 2017; 42(40): 25143-25165.
https://doi.org/10.1016/j.ijhydene.2017.08.103
[9] Gholami T, Pirsaheb M. Review on effective parameters in electrochemical hydrogen storage. International Journal of Hydrogen Energy. 2021; 46(1): 783-795.
https://doi.org/10.1016/j.ijhydene.2020.10.003
[10] Morassaei MS, Salehabadi A, Salavati-Niasari M, Akbari A. Preparation, structural analysis, and assessing the impacts of holmium and ytterbium on electrochemical hydrogen storage property of strontium cerium molybdate nanostructures. Electrochimica Acta. 2020; 365: 136851.
https://doi.org/10.1016/j.electacta.2020.136851
[11] Schneemann A, White JL, Kang S, Jeong S, Wan LF, Cho ES, Stavila V. Nanostructured metal hydrides for hydrogen storage. Chemical Reviews. 2018; 118(22): 10775-10839.
https://doi.org/10.1021/acs.chemrev.8b00313
[12] Rowlandson JL, Edler KJ, Tian M, Ting VP. Toward process-resilient lignin-derived activated carbons for hydrogen storage applications. ACS Sustainable Chemistry & Engineering. 2020; 8(5): 2186-2195.
https://doi.org/10.1021/acssuschemeng.9b05869
[13] Broom DP, Webb CJ, Fanourgakis GS, Froudakis GE, Trikalitis PN, Hirscher M. Concepts for improving hydrogen storage in nanoporous materials. International Journal of Hydrogen Energy. 2019; 44(15): 7768-7779.
https://doi.org/10.1016/j.ijhydene.2019.01.224
[14] Hirscher M, Yartys VA, Baricco M et al. Materials for hydrogen-based energy storage–past, recent progress and future outlook. Journal of Alloys and Compounds. (2020); 827: 153548.
https://doi.org/10.1016/j.jallcom.2019.153548
[15] Sangsefidi FS, Salavati-Niasari M. Fe2O3–CeO2 ceramic nanocomposite oxide: characterization and investigation of the effect of morphology on its electrochemical hydrogen storage capacity. ACS Applied Energy Materials. 2018; 1(9): 4840-4848.
https://doi.org/10.1021/acsaem.8b00907
[16] Morassaei MS, Salehabadi A, Amiri O, Salavati-Niasari M, Akbari A. Unveiling the synthesis of CuCe2(MoO4)4 nanostructures and its physico-chemical properties on electrochemical hydrogen storage. Journal of Alloys and Compounds. 2020; 826: 154023.
https://doi.org/10.1016/j.jallcom.2020.154023
[17] Liu H, Liu W, Sun Y, Chen P, Zhao J, Guo X, Su Z. Preparation and electrochemical hydrogen storage properties of Ti49Zr26Ni25 alloy covered with porous polyaniline. International Journal of Hydrogen Energy. 2020; 45(20): 11675-11685.
https://doi.org/10.1016/j.ijhydene.2020.02.115
[18] Ashrafi S, Mousavi-Kamazani M, Zinatloo-Ajabshir S, Asghari A. Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage. International Journal of Hydrogen Energy. 2020; 45(41), 21611-21624.
https://doi.org/10.1016/j.ijhydene.2020.05.166
[19] Ghodrati M, Mousavi-Kamazani M, Zinatloo-Ajabshir S. Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceramics International. 2020; 46(18): 28894-28902.
https://doi.org/10.1016/j.ceramint.2020.08.057
[20] Salehabadi A, Salavati-Niasari M, Gholami T. Effect of copper phthalocyanine (CuPc) on electrochemical hydrogen storage capacity of BaAl2O4/BaCO3 nanoparticles. International Journal of Hydrogen Energy. 2017; 42(22): 15308-15318.
https://doi.org/10.1016/j.ijhydene.2017.05.028
[21] Yan SR, Gholami T, Amiri O, Salavati-Niasari M, Seifi S, Amiri M, Foong LK. Effect of adding TiO2, SiO2 and graphene on of electrochemical hydrogen storage performance and coulombic efficiency of CoAl2O4 spinel. Journal of Alloys and Compounds. 2020; 828: 154353.
https://doi.org/10.1016/j.jallcom.2020.154353
[22] Zinatloo-Ajabshir S, Mousavi-Kamazani M. Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceramics International. 2020; 46(17): 26548-26556.
https://doi.org/10.1016/j.ceramint.2020.07.121
[23] Sangsefidi FS, Salavati-Niasari M, Ghasemifard M, Shabani Nooshabadi M. Study of hydrogen storage performance of ZnO-CeO2 ceramic nanocamposite and effect of various parameters to reaach the optimum product. International Journal of Hydrogen Energy. 2018; 43(51): 22955-22965.
https://doi.org/10.1016/j.ijhydene.2018.10.082
[24] Masjedi-Arani M, Salavati-Niasari M. Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. International Journal of Hydrogen Energy. 2017; 42(27): 17184-17191.
https://doi.org/10.1016/j.ijhydene.2017.05.118
[25] Siahmansouri M, Mousavi-Kamazani M. Photocatalytic desulfurization of thiophene under visible light by hollow flower-like NixZn2-xV2O7/WO4 nanostructures. Ceramics International. 2021; 47(19): 27241-27250.
https://doi.org/10.1016/j.ceramint.2021.06.146
[26] Azlina HN, Hasnidawani JN, Norita H. Synthesis of SiO2 nanostructures using sol-gel method. Acta Physica Polonica A. 2016; 129: 842-844.
https://doi.org/10.12693/APhysPolA.129.842