ساخت و مشخصه‌یابی نانوساختارهای ZnCo2O4 و بررسی تاثیر ریخت بر کارایی حسگری آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در پژوهش حاضر، نانوساختارهای ZnCo2O4 به روش آبی-حرارتی با موفقیت ساخته شدند. به منظور بررسی اثر ریخت این نانوساختارها بر کارایی حسگری گاز آنها، در فرآیند سنتز از سه مقدار متفاوت اوره (5، 10 و 15 میلی‌مول) استفاده شد که منجر به رشد سه ریخت متفاوت ZnCo2O4 گردید. مشخصه‌های ساختاری و ریخت‌شناسی نمونه‌ها به‌ترتیب با تکنیک‌های پراش پرتو ایکس و میکروسکوپ الکترونی روبشی مورد مطالعه قرار گرفتند. سپس جهت بررسی پارامترهای حسگری گاز، نانوساختارهای تهیه شده در اتانول پراکنده و بر روی بستری از شیشه با الکترودی از جنس طلا قرار گرفتند. نتایج نشان داد که حسگر حاوی نانوساختارهای ZnCo2O4 که با غلظت اورۀ mmol 5 به‌صورت میکروگل‌های میله‌ای رشد یافته اند مقدار پاسخ قابل توجه 5/9، زمان پاسخ 25 ثانیه و زمان بازیابی 49 ثانیه را برای گاز استون با غلظت ppm 100 در دمای کار oC240 دارد. علاوه بر این، مشاهده شد این حسگر گزینش پذیری خوبی نسبت به گاز استون در مقایسه با گازهای اتانول، متانول، بنزن و تولوئن دارد. پاسخ حسگری بالای میکروگل‌های میله‌ای 5mmol urea ZnCo2O4 را می‌توان به سطح تماس موثر بزرگ و ریخت میله‌ای شکل نمونه و همچنین به پراکندگی یکنواخت نانوساختارهای آن مرتبط دانست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and characterization of ZnCo2O4 nanostructures and investigation of their morphologies effect on gas sensing performance

نویسندگان [English]

  • Iraj Kazeminezhad
  • Mona Ebrahimifar
Physics department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

In the present work, ZnCo2O4 nanostructures were successfully synthesized using hydrothermal method. In order to investigate the morphology of the nanostructures on their gas sensing performance, we used three different concentrations of urea (5, 10, 15 mmol) in growth process which caused three different morphologies of ZnCo2O4. The structure and morphology of the products were respectively analyzed by XRD and SEM. To study the gas sensing parameters, the nanostructures were dispersed in ethanol and then settled on a gold coated glass electrode. The results showed that the sensor including ZnCo2O4 nanostructure grown under 5 mmol urea has 9.5 response, 25 seconds response time, and 49 seconds recovery time for 100 ppm acetone gas at 240 oC work temperature. In addition, we observed that this sensor has a good selectivity for acetone gas in compare to ethanol, methanol, benzene, and toluene gases. The high response of ZnCo2O4 flower shaped microrod grown under 5 mmol urea could be related to its large specific area and rod morphology.

کلیدواژه‌ها [English]

  • ZnCo2O4 nanostructure
  • morphology effect
  • gas sensing performance
  • acetone gas
[1] Malik R, Tomer VK, Mishra YK, Lin L. Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews. 2020 Jun 1;7(2).
[2] Ter-Zakaryan A, Zhukov AD. Materials Horizons: From Nature to Nanomaterials. InMaterials Horizons: From Nature to Nanomaterials 2021 (pp. 349-377).
[3] Wang L, Cheng Y, Gopalan S, Luo F, Amreen K, Singh RK, Goel S, Lin Z, Naidu R. Review and Perspective: Gas Separation and Discrimination Technologies for Current Gas Sensors in Environmental Applications. ACS sensors. 2023 Apr 19;8(4):1373-90.
[4] Jafari N, Zeinali S, Shadmehr J. Room temperature resistive gas sensor based on ZIF-8/MWCNT/AgNPs nanocomposite for VOCs detection. Journal of Materials Science: Materials in Electronics. 2019 Jul 1;30:12339-50.
[5] Dong C, Liu X, Guan H, Chen G, Xiao X, Djerdj I, Wang Y. Combustion synthesized hierarchically porous WO3 for selective acetone sensing. Materials Chemistry and Physics. 2016 Dec 1;184:155-61.
[6] Bhati VS, Kumar M, Banerjee R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: A review. Journal of Materials Chemistry C. 2021;9(28):8776-808.
[7] Kim JH, Jeong HM, Na CW, Yoon JW, Abdel-Hady F, Wazzan AA, Lee JH. Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4 hetero-nanostructures prepared by galvanic replacement. Sensors and Actuators B: Chemical. 2016 Nov 1;235:498-506.
[8] Reddy GR, Dillip GR, Sreekanth TV, Rajavaram R, Raju BD, Nagajyothi PC, Shim J. Mechanistic investigation of defect-engineered, non-stoichiometric, and Morphology-regulated hierarchical rhombus-/spindle-/peanut-like ZnCo2O4 microstructures and their applications toward high-performance supercapacitors. Applied Surface Science. 2020 Nov 1;529:147123.
[9] Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS applied materials & interfaces. 2013 Oct 23;5(20):10011-7.
[10] Li L, Xie Z, Jiang G, Wang Y, Cao B, Yuan C. Efficient laser‐induced construction of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide hybrids toward exceptional capacitive lithium storage. Small. 2020 Aug;16(32):2001526.
[11] Yi TF, Li YM, Wu JZ, Xie Y, Luo S. Hierarchical mesoporous flower-like ZnCo2O4@ NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta. 2018 Sep 10;284:128-41.
[12] Nazemi H, Joseph A, Park J, Emadi A. Advanced micro-and nano-gas sensor technology: A review. Sensors. 2019 Mar 14;19(6):1285.
[13] Raula M, Biswas M, Mandal TK. Ionic liquid-based solvent-induced shape-tunable small-sized ZnO nanostructures with interesting optical properties and photocatalytic activities. RSC advances. 2014;4(10):5055-64.
[14] Sun J, Li S, Han X, Liao F, Zhang Y, Gao L, Chen H, Xu C. Rapid hydrothermal synthesis of snowflake-like ZnCo2O4/ZnO mesoporous microstructures with excellent electrochemical performances. Ceramics International. 2019 Jun 15;45(9):12243-50.
[15] Le DT, Long ND, Xuan CT, Van Toan N, Hung CM, Van Duy N, Theu LT, Dinh VA, Hoa ND. Porous CoFe2O4 nanorods: VOC gas-sensing characteristics and DFT calculation. Sensors and Actuators B: Chemical. 2023 Mar 15;379:133286.
[16] Fan J, Yang C, Zhao X, Li D, Xiao F, Wu R, Wang L. Enhanced gas sensing property of Co3O4 matrix nanocomposites with halloysite nanotubes toward triethylamine. Journal of Materials Research and Technology. 2023 Mar 1;23:2491-503.
[17] Yamazoe N, Shimanoe K. Fundamentals of semiconductor gas sensors. InSemiconductor Gas Sensors 2020 Jan 1 (pp. 3-38). Woodhead Publishing.
[18] Shao F, Hoffmann MW, Prades JD, Zamani R, Arbiol J, Morante JR, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sensors and Actuators B: Chemical. 2013 May 1;181:130-5.
[19] Qin Q, Li Y, Bu W, Meng L, Chuai X, Zhou Z, Hu C. Self-template-derived ZnCo2O4 porous microspheres decorated by Ag nanoparticles and their selective detection of formaldehyde. Inorganic Chemistry Frontiers. 2021;8(3):811-20.
[20] Ochoa-Muñoz YH, Mejía de Gutiérrez R, Rodríguez-Páez JE. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules. 2023 Jan 24;28(3):1150.
[21] Xiong Y, Zhu Z, Ding D, Lu W, Xue Q. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Applied Surface Science. 2018 Jun 15;443:114-21.
[22] Yin Z, Sun Z, Wu J, Liu R, Zhang S, Qian Y, Min Y. Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors. Applied Surface Science. 2018 Nov 1;457:1103-9.
[23] Zhou T, Sui N, Zhang R, Zhang T. Cabbage-shaped zinc-cobalt oxide (ZnCo2O4) sensing materials: Effects of zinc ion substitution and enhanced formaldehyde sensing properties. Journal of colloid and interface science. 2019 Mar 1;537:520-7.
[24] Long H, Harley-Trochimczyk A, Cheng S, Hu H, Chi WS, Rao A, Carraro C, Shi T, Tang Z, Maboudian R. Nanowire-assembled hierarchical ZnCo2O4 microstructure integrated with a low-power microheater for highly sensitive formaldehyde detection. ACS Applied Materials & Interfaces. 2016 Nov 23;8(46):31764-71.
[25] Bangale SV. Nanostructured ZncooThick Film As An Ethanol Sensor. International Journal on Smart Sensing and Intelligent Systems. 2017 Dec 27;7(1):178-95.
[26] Vijayanand S, Joy PA, Potdar HS, Patil D, Patil P. Nanostructured spinel ZnCo2O4 for the detection of LPG. Sensors and Actuators B: Chemical. 2011 Feb 20;152(1):121-9.