گرافن اکسید عامل دار شده با پیریمیدینیوم هیدروژن سولفات به عنوان کاتالیزگر موثر و سازگار با محیط زیست برای تهیه بیس کومارین ها تحت شرایط بدون حلال

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش علوم پایه، دانشکده شیمی دانشگاه پیام نور، تهران، ایران

چکیده

در این کار پژوهشی کاتالیزگر گرافن اکسید عامل دار شده با پیریمیدینیوم هیدروژن سولفات تهیه شد و جهت تهیه بیس کومارین ها استفاده شد. گرافن اکسید از اکسایش گرافیت به روش ارتقا یافته هامر تهیه شد و با 2 - آمینوپیریمیدین به روش آمید سازی عامل دار شد. از واکنش محصول مرحله قبل و سولفوریک اسید کاتالیزگر حاوی هیدروژن سولفات تهیه شد و توسط روش های گوناگون طیف سنجی، میکروسکوپی و گرمایی مانند FTIR، XRD، FESEM، EDS و TGA شناسایی شد. در ادامه جهت بررسی کارایی کاتالیزگر در سنتز آلی تهیه بیس کومارین ها از واکنش شبه سه جزئی و یک مرحله ایی 4-هیدروکسی کومارین و آلدهیدهای آروماتیک در شرایط بدون حلال مطالعه شد. نتایج این مطالعه نشان داد که این کاتالیزگر جهت تهیه این ترکیبات بسیار کارآمد بوده و بازده بالایی از محصولات بدست آمد. روش استفاده شده و کاتالیزگر مورد بررسی نسبت به دیگر روش ها و کاتالیزگرها دارای مزیت های بسیاری از جمله سازگاری با محیط زیست، پایداری کاتالیزگر در محیط واکنش، جداسازی آسان محصولات، عدم وجود محصولات جانبی، زمان کم واکنش، انجام واکنش در دمای پایین و در دسترس بودن کاتالیزگر می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Graphene oxide substituted pyrimidinium hydrogen sulfate as an efficient and sustainable catalyst for the synthesis of bis-coumarins under solvent-free conditions

نویسندگان [English]

  • Esmael Rostami
  • Razeih Dashti
Department of Basic Sciences, Faculty of Chemistry, Payame Noor University
چکیده [English]

Graphene oxide functionalized by pyrimidinium hydrogen sulfate (GO@Pyrim.H-HSO4) is an efficient and environmentally benign catalyst for the synthesis of bis-coumarins. At first, graphene oxide was prepared according to a modified Hummers method from the oxidation of graphite using violent oxidants such as concentrated sulfuric acid, sodium nitrate, potassium permanganate, and Hydrogen peroxide. It was subsequently modified by 2-aminopyrimidine through amide formation and then treated with sulfuric acid to reach the catalyst as pyrimidinium hydrogen sulfate (GO@Pyrim.H-HSO4). The catalyst was characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and FTIR spectroscopy. The synthesis of bis-coumarins was implemented through a one-pot process using no solvent by the reaction of 4-hydroxycoumarin and functionalized benzaldehydes. The scope and limitations of the procedure were examined using aromatic aldehydes with various functional groups. The functional groups had no significant effect on the product yields. The catalyst exhibited efficient properties such as simple work-up, no byproducts, sustainability, nonmetal and safe components, stability under reaction conditions, and recoverability. The synthetic route shows significant properties including sustainable, simple work-up, solvent-free condition, short reaction times, and no by-product.

کلیدواژه‌ها [English]

  • Graphene oxide
  • pyrimidinium hydrogen sulfate catalyst
  • synthesis
  • bis- coumarin
  • green chemistry
[1] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367(6476):397-400. DOI: 10.1126/science.aay306
[2] Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP. Green and sustainable solvents in chemical processes. Chemical Reviews. 2018;118(2):747-800. https://doi.org/10.1021/acs.chemrev.7b00571
[3] Eisavi R. Preparation and characterization of NiFe2O4/Cu(OH)2 magnetic nanocatalyst and its use in one-pot synthesis of β,-chloroacetates from epoxides. Nanoscale, 8(2), 45-58, 2021.
[4] Bonnelle JP, Delmon B, Derouane EG, eds., Surface properties and catalysis by non-metals, (Vol. 105), Springer Science & Business Media, 2012.
[5] Amani M, Sadeghi S. A comparative DFT study of CO oxidation on BN and AlN doped graphene. Nanoscale. 2018;5(2):149-157.
[6] Ahmad H, Fan M, Hui D. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering. 2018;145:270-280. https://doi.org/10.1016/j.compositesb.2018.02.006
[7] Mohammadi O, Golestanzadeh M, Abdouss M. Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: a review. New Journal of Chemistry. 2017;41(20):11471-11497. https://doi.org/10.1039/c7nj02515g
[8] Mustafa YF, Bashir MK, Oglah MK. Original and innovative advances in the synthetic schemes of coumarin-based derivatives: A review. Systematic Reviews in Pharmacy. 2020;11(6):598-612. DOI: 10.31838/srp.2020.6.90
[9] Goncalves GA, Spillere AR, das Neves GM, Kagami LP, von Poser GL, Canto RF, Eifler-Lima V. Natural and synthetic coumarins as antileishmanial agents: A review. European Journal of Medicinal Chemistry. 2020;203:112514. https://doi.org/10.1016/j.ejmech.2020.112514
[10] Ren QC, Gao C, Xu Z, Feng LS, Liu ML, Wu X, Zhao F. Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry. 2018;18(2):101-113. https://doi.org/10.2174/1568026618666180221114515
[11] Jokar M, Naeimi H, Nabi Bidhendi G. Design and preparation of platinum anchored on cellulose as heterogeneous nanocatalyst for synthesis of bis-coumarin derivatives. Polycyclic Aromatic Compounds. 2022;42(8):4994-5005. https://doi.org/10.1080/10406638.2021.1922468
[12] Mitra B, Ghosh P. Humic acid: A biodegradable organocatalyst for solvent‐free synthesis of bis (indolyl) methanes, bis (pyrazolyl) methanes, bis‐coumarins and bis‐lawsones. ChemistrySelect. 2021;6(1):68-81. https://doi.org/10.1002/slct.202004245
[13] Zahiri S, Mokhtary M. Bi(NO3)3·5H2O: An efficient catalyst for one-pot synthesis of 3-((aryl)(diethylamino) methyl)-4-hydroxy-2H-chromen-2-ones and biscoumarin derivatives. Journal of Taibah University for Science. 2015;9(1):89-94. https://doi.org/10.1016/j.jtusci.2014.09.006
[14] Khodabakhshi S, Shahamirian M, Baghernejad M. Synthesis of new and known dicoumarols in aqueous media: a green and convenient procedure promoted by titanium (IV) oxide nanoparticles. Letters in Organic Chemistry. 2014;11(8):596-600.
[15] Kharrngi B, Dhar ED, Basumatary G, Das D, Deka RC, Yadav AK, Bez G. Developing a highly potent anthelmintic: study of catalytic application of L-proline derived aminothiourea in rapid synthesis of biscoumarins and their in vitro anthelmintic essay. Journal of Chemical Sciences. 2021;133:1-5. https://doi.org/10.1007/s12039-020-01881-3
[16] Khurana JM, Vij K. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. Journal of Chemical Sciences. 2012;124:907-912. https://doi.org/10.1007/s12039-012-0275-8
[17] Shahzad D, Saeed A, Faisal M, Larik FA, Bilquees S, Channar PA. Recent synthetic approaches to 3,3′-(Methylene) bis (Coumarins). Organic Preparations and Procedures International. 2019;51(3):199-239. https://doi.org/10.1080/00304948.2019.1599788
[18] Shirini F, Abedini M, Zamani S, Fallah Moafi H. Introduction of W-doped ZnO nanocomposite as a new and efficient nanocatalyst for the synthesis of biscoumarins in water. Journal of Nanostructure in Chemistry. 2015;5:123-130. https://doi.org/10.1007/s40097-014-0143-9
[19] Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene. 2017;6(1):1-8. DOI: 10.4236/graphene.2017.61001
[20] Ulaş Y. Theoretical and experimental investigation of 2-((4-(hydroxymethyl) phenyl) (pyrrolidin-1-yl) methyl) phenol: synthesis, spectroscopic (FTIR, UV, NMR) studies, and NLO analysis. Journal of Structural Chemistry. 2021;62:356-368. https://doi.org/10.26902/JSC_id69877
[21] Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;192:458-463. https://doi.org/10.1016/j.saa.2017.11.050
[22] Liu X, Zhang R. Infrared spectrum about the different extracts of fructus piperis longi. Chinese Journal of Applied Chemistry. 2021;38(3):271-275. DOI: 10.19894/j.issn.1000-0518.200341
[23] Kumar V, Roy BK. Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Scientific Reports. 2018;8(1):1-11. DOI:10.1038/s41598-018-29114-1
[24] Ahamad MN, Iman K, Raza MK, Kumar M, Ansari A, Ahmad M, Shahid M. Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt (II) and copper (II) Schiff base complexes. Bioorganic chemistry. 2020;95:103561. https://doi.org/10.1016/j.bioorg.2019.103561
[25] Vasylieva A, Doroshenko I, Vaskivskyi Y, Chernolevska Y, Pogorelov V. FTIR study of condensed water structure. Journal of Molecular Structure. 2018;1167:232-238. https://doi.org/10.1016/j.molstruc.2018.05.002
[26] Chenwei C, Zhipeng T, Yarui M, Weiqiang Q, Fuxin Y, Jun M, Jing X. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly (vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings. 2018;123:176-184. https://doi.org/10.1016/j.porgcoat.2018.07.001
[27] Slaný M, Jankovič Ľ, Madejová J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Applied Clay Science. 2019;176:11-20. https://doi.org/10.1016/j.clay.2019.04.016
[28] Jha S, Mehta S, Chen Y, Ma L, Renner P, Parkinson DY, Liang H. Design and synthesis of lignin-based flexible supercapacitors. ACS Sustainable Chemistry & Engineering. 2019;8(1):498-511. https://doi.org/10.1021/acssuschemeng.9b05880
[29] Patil PB, Parit SB, Waifalkar PP, Patil SP, Dongale TD, Sahoo SC, Kollu P, Nimbalkar MS, Patil PS, Chougale AD. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Materials Letters. 2018;223:178-181. https://doi.org/10.1016/j.matlet.2018.04.008
[30] Zhu HQ, Zhao HR, Wei HY, Wang W, Wang HR, Li K, Lu XX, Tan B. Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal. Combustion and Flame. 2020;216:354-368. https://doi.org/10.1016/j.combustflame.2020.03.007
[31] Litke A, Frei H, Hensen EJ, Hofmann JP. Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. Journal of Photochemistry and Photobiology A: Chemistry. 2019;370:84-88. https://doi.org/10.1016/j.jphotochem.2018.10.023
[32] Tarar MA, Khan AH, Ur Rehman Z, Qamar S, Akhtar MN. Compatibility of sunflower oil with asphalt binders: a way toward materials derived from renewable resources. Materials and Structures. 2020;53:1-5. DOI:10.1617/s11527-020-01506-8
[33] Çalışır Ü, Çiçek B. Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics. Chemical Papers. 2020;74(10):3293-3302. https://doi.org/10.1007/s11696-020-01158-6
[34] Roy DR, Shah EV, Roy SM. Optical activity of Co-porphyrin in the light of IR and Raman spectroscopy: a critical DFT investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;190:121-128. https://doi.org/10.1016/j.saa.2017.08.069
[35] Saremi LH, Noshahr KD, Ebrahimi A, Khalegian A, Abdi K, Lagzian M. Multi-stage screening to predict the specific anticancer activity of Ni(II) mixed-ligand complex on gastric cancer cells; biological activity, FTIR spectrum, DNA binding behavior and simulation studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;251:119377. https://doi.org/10.1016/j.saa.2020.119377
[36] Izquierdo-Lorenzo I, Sánchez-Cortés S, García-Ramos JV. Trace detection ofaminoglutethimide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Analytical methods. 2011;3(7):1540-1545. https://doi.org/10.1039/c1ay05032j
[37] Ali M, Mujtaba-ul-Hassan S, Ahmad J, Khurshid A, Shahzad F, Iqbal Z, Mehmood M, Waheed K. Fabrication of PEGylated Porous Alumina Whiskers (PAW) for drug delivery applications. Materials Letters. 2019;241:23-26. https://doi.org/10.1016/j.matlet.2019.01.044
[38] Stalin N, Shobhanadevi N. Studies on thermal, structural, and compositional properties of agro-waste jute fiber composite reinforced with cardanol resin. Biomass Conversion and Biorefinery. 2021; 12:10413-10420. https://doi.org/10.1007/s13399-021-01958-0
[39] Kumar MM, Kumari SB, Kavitha E, Velmurugan B, Karthikeyan S. Spectral profile index changes as biomarker of toxicity in Catla catla (Hamilton, 1822) edible fish studied using FTIR and principle component analysis. SN Applied Sciences. 2020;2:1233-1243. https://doi.org/10.1007/s42452-020-3001-z
[40] Herrera-Kao WA, Loría-Bastarrachea MI, Pérez-Padilla Y, Cauich-Rodríguez JV, Vázquez-Torres H, Cervantes-Uc JM. Thermal degradation of poly (caprolactone), poly (lactic acid), and poly (hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin. 2018;75:4191-4205. https://doi.org/10.1007/s00289-017-2260-3
[41] Kurbah SD. Dioxido-vanadium(V) complex catalyzed oxidation of alcohols and tandem synthesis of oximes: A simple catalytic protocol for C–N bond formation. Journal of Coordination Chemistry. 2021;74(4-6):905-918. https://doi.org/10.1080/00958972.2021.1876230
[42] Geng S, Ren N, Zhang YY, Tang K, Zhang JJ. Studies on preparation, crystal structure, thermal properties and fluorescence properties of rare earth complexes composed of 2-chloro-4-fluorobenzoic acid and 2,2':6′,2 ″-terpyridine. Journal of Solid State Chemistry. 2022;305:122633. https://doi.org/10.1016/j.jssc.2021.122633
[43] He Z, Liu H, Yang G, Jiang C, Ji M, Yu J, Wang M, Zhu C, Xu J. Cyclization mechanism and kinetics of poly (acrylonitrile-co-2-acrylamido-2-methylpropane sulfonic acid) copolymer investigated by FTIR spectroscopy. Polymer Testing. 2021;93:106969. https://doi.org/10.1016/j.polymertesting.2020.106969
[44] Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, Manjili HK, Davaran S, Danafar H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International journal of biological macromolecules. 2018;115:83-89. https://doi.org/10.1016/j.ijbiomac.2018.04.043
[45] Periasamy A, Muruganand S, Palaniswamy M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J. Chem. 2009;2(4):981-989.
[46] Jiao L, Xiao H, Wang Q, Sun J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability. 2013;98(12):2687-2696. https://doi.org/10.1016/j.polymdegradstab.2013.09.032
[47] Platero EE, Mentruit MP, Areán CO, Zecchina A. FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate. Journal of Catalysis. 1996;162(2):268-276. https://doi.org/10.1006/jcat.1996.0284
[48] Balachandran V, Parimala K. Tautomeric purine forms of 2-amino-6-chloropurine (N9H10 and N7H10): Structures, vibrational assignments, NBO analysis, hyperpolarizability, HOMO–LUMO study using B3 based density functional calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;96:340-351. https://doi.org/10.1016/j.saa.2012.05.050
[49] Kumar S, Koh J. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite. International journal of biological macromolecules. 2014;70:559-564. https://doi.org/10.1016/j.ijbiomac.2014.07.019
[50] Ghanbari K, Bonyadi S. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid. International Journal of Polymer Analysis and Characterization. 2020;25(3):105-125. https://doi.org/10.1080/1023666X.2020.1766785
[51] Abbaspour S, Nourbakhsh A, Ebrahimi R, Ghayour H, Mackenzie KJ. The effect of nanoparticle and mesoporous TiO2 additions on the electronic characteristics of reduced graphene oxide nanocomposites with zinc oxide under UV irradiation. Materials Science and Engineering: B. 2019;246:89-95. https://doi.org/10.1016/j.mseb.2019.06.003
[52] Abbasian M, Roudi MM, Mahmoodzadeh F, Eskandani M, Jaymand M. Chitosan-grafted-poly (methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. International journal of biological macromolecules. 2018;118:1871-1879. https://doi.org/10.1016/j.ijbiomac.2018.07.036
[53] Zarei M, Zolfigol MA, Moosavi-Zare AR, Noroozizadeh E. Trityl bromide versus nano-magnetic catalyst in the synthesis of henna-based xanthenes and bis-coumarins. Journal of the Iranian Chemical Society. 2017;14:2187-2198. https://doi.org/10.1007/s13738-017-1155-4
[54] Kiasat AR, Hemat-Alian L. Phospho sulfonic acid: a versatile and efficient solid acid catalyst for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes under solvent-free conditions. Research on Chemical Intermediates. 2015;41:873-880. https://doi.org/10.1007/s11164-013-1239-4
[55] Mahmoodi NO, Jalalifard Z, Fathanbari GP. Green synthesis of bis‐coumarin derivatives using Fe(SD)3 as a catalyst and investigation of their biological activities. Journal of the Chinese Chemical Society. 2020;67(1):172-182. https://doi.org/10.1002/jccs.201800444
[56] Tabatabaeian K, Heidari H, Khorshidi A, Mamaghani M, Mahmoodi NO. Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium (III) chloride hydrate as a versatile homogeneous catalyst. Journal of the Serbian Chemical Society. 2012;77(4):407-413. DOI: 10.2298/JSC110427189T
[57] Patil SK, Awale DV, Vadiyar MM, Patil SA, Bhise SC, Kolekar SS. Simple protic ionic liquid [Et3 NH][HSO4] as a proficient catalyst for facile synthesis of biscoumarins. Research on Chemical Intermediates. 2017;43:5365-5376. https://doi.org/10.1007/s11164-017-2932-5
[58] Banday SM, Amin A, Bashir S, Qadri RA, Khan KZ, Rizvi MA. Anti-metastatic propensity of biscoumarin scaffold synthesized under catalyst free aqueous phase microwave irradiation. Croatica Chemica Acta. 2017;90(3):471-480. https://doi.org/10.5562/cca3136
[59] Parvanak Boroujeni K, Ghasemi P, Rafienia Z. Synthesis of biscoumarin derivatives using poly (4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst. Monatshefte für Chemie-Chemical Monthly. 2014;145:1023-1026. https://doi.org/10.1007/s00706-014-1156-2
[60] Faisal M, Larik FA, Saeed A. A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst. Journal of Porous Materials. 2019;26:455-466. https://doi.org/10.1007/s10934-018-0625-0
[61] Shirini F, Lati MP. BiVO4-NPs: an efficient nano-catalyst for the synthesis of biscoumarins, bis (indolyl) methanes and 3, 4-dihydropyrimidin-2 (1 H)-ones (thiones) derivatives. Journal of the Iranian Chemical Society. 2017;14:75-87. https://doi.org/10.1007/s13738-016-0959-y
[62] Sethiya A, Teli P, Manhas A, Agarwal D, Soni J, Sahiba N, Jha P, Agarwal S. Carbon-SO3H: An efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. Synthetic Communications. 2020;50(16):2440-2460. https://doi.org/10.1080/00397911.2020.1780613
 
[63] Hayati P, Eghbali K, Rezaei R. Magnetic nanoparticles tris (hydrogensulfato) boron as an efficient heterogeneous acid catalyst for the synthesis of α, ά-benzylidene bis (4-hydroxycoumarin) derivatives under solvent-free condition. Research on Chemical Intermediates. 2019;45(10):5067-5089. https://doi.org/10.1007/s11164-019-03881-6
[64] Khurana JM, Kumar S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano [c] chromene derivatives in water and solvent-free conditions. Tetrahedron Letters. 2009;50(28):4125-4127. https://doi.org/10.1016/j.tetlet.2009.04.125
[1] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367(6476):397-400. DOI: 10.1126/science.aay306
[2] Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP. Green and sustainable solvents in chemical processes. Chemical Reviews. 2018;118(2):747-800. https://doi.org/10.1021/acs.chemrev.7b00571
[3] Eisavi R. Preparation and characterization of NiFe2O4/Cu(OH)2 magnetic nanocatalyst and its use in one-pot synthesis of β,-chloroacetates from epoxides. Nanoscale, 8(2), 45-58, 2021.
[4] Bonnelle JP, Delmon B, Derouane EG, eds., Surface properties and catalysis by non-metals, (Vol. 105), Springer Science & Business Media, 2012.
[5] Amani M, Sadeghi S. A comparative DFT study of CO oxidation on BN and AlN doped graphene. Nanoscale. 2018;5(2):149-157.
[6] Ahmad H, Fan M, Hui D. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering. 2018;145:270-280. https://doi.org/10.1016/j.compositesb.2018.02.006
[7] Mohammadi O, Golestanzadeh M, Abdouss M. Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: a review. New Journal of Chemistry. 2017;41(20):11471-11497. https://doi.org/10.1039/c7nj02515g
[8] Mustafa YF, Bashir MK, Oglah MK. Original and innovative advances in the synthetic schemes of coumarin-based derivatives: A review. Systematic Reviews in Pharmacy. 2020;11(6):598-612. DOI: 10.31838/srp.2020.6.90
[9] Goncalves GA, Spillere AR, das Neves GM, Kagami LP, von Poser GL, Canto RF, Eifler-Lima V. Natural and synthetic coumarins as antileishmanial agents: A review. European Journal of Medicinal Chemistry. 2020;203:112514. https://doi.org/10.1016/j.ejmech.2020.112514
[10] Ren QC, Gao C, Xu Z, Feng LS, Liu ML, Wu X, Zhao F. Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry. 2018;18(2):101-113. https://doi.org/10.2174/1568026618666180221114515
[11] Jokar M, Naeimi H, Nabi Bidhendi G. Design and preparation of platinum anchored on cellulose as heterogeneous nanocatalyst for synthesis of bis-coumarin derivatives. Polycyclic Aromatic Compounds. 2022;42(8):4994-5005. https://doi.org/10.1080/10406638.2021.1922468
[12] Mitra B, Ghosh P. Humic acid: A biodegradable organocatalyst for solvent‐free synthesis of bis (indolyl) methanes, bis (pyrazolyl) methanes, bis‐coumarins and bis‐lawsones. ChemistrySelect. 2021;6(1):68-81. https://doi.org/10.1002/slct.202004245
[13] Zahiri S, Mokhtary M. Bi(NO3)3·5H2O: An efficient catalyst for one-pot synthesis of 3-((aryl)(diethylamino) methyl)-4-hydroxy-2H-chromen-2-ones and biscoumarin derivatives. Journal of Taibah University for Science. 2015;9(1):89-94. https://doi.org/10.1016/j.jtusci.2014.09.006
[14] Khodabakhshi S, Shahamirian M, Baghernejad M. Synthesis of new and known dicoumarols in aqueous media: a green and convenient procedure promoted by titanium (IV) oxide nanoparticles. Letters in Organic Chemistry. 2014;11(8):596-600.
[15] Kharrngi B, Dhar ED, Basumatary G, Das D, Deka RC, Yadav AK, Bez G. Developing a highly potent anthelmintic: study of catalytic application of L-proline derived aminothiourea in rapid synthesis of biscoumarins and their in vitro anthelmintic essay. Journal of Chemical Sciences. 2021;133:1-5. https://doi.org/10.1007/s12039-020-01881-3
[16] Khurana JM, Vij K. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. Journal of Chemical Sciences. 2012;124:907-912. https://doi.org/10.1007/s12039-012-0275-8
[17] Shahzad D, Saeed A, Faisal M, Larik FA, Bilquees S, Channar PA. Recent synthetic approaches to 3,3′-(Methylene) bis (Coumarins). Organic Preparations and Procedures International. 2019;51(3):199-239. https://doi.org/10.1080/00304948.2019.1599788
[18] Shirini F, Abedini M, Zamani S, Fallah Moafi H. Introduction of W-doped ZnO nanocomposite as a new and efficient nanocatalyst for the synthesis of biscoumarins in water. Journal of Nanostructure in Chemistry. 2015;5:123-130. https://doi.org/10.1007/s40097-014-0143-9
[19] Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene. 2017;6(1):1-8. DOI: 10.4236/graphene.2017.61001
[20] Ulaş Y. Theoretical and experimental investigation of 2-((4-(hydroxymethyl) phenyl) (pyrrolidin-1-yl) methyl) phenol: synthesis, spectroscopic (FTIR, UV, NMR) studies, and NLO analysis. Journal of Structural Chemistry. 2021;62:356-368. https://doi.org/10.26902/JSC_id69877
[21] Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;192:458-463. https://doi.org/10.1016/j.saa.2017.11.050
[22] Liu X, Zhang R. Infrared spectrum about the different extracts of fructus piperis longi. Chinese Journal of Applied Chemistry. 2021;38(3):271-275. DOI: 10.19894/j.issn.1000-0518.200341
[23] Kumar V, Roy BK. Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Scientific Reports. 2018;8(1):1-11. DOI:10.1038/s41598-018-29114-1
[24] Ahamad MN, Iman K, Raza MK, Kumar M, Ansari A, Ahmad M, Shahid M. Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt (II) and copper (II) Schiff base complexes. Bioorganic chemistry. 2020;95:103561. https://doi.org/10.1016/j.bioorg.2019.103561
[25] Vasylieva A, Doroshenko I, Vaskivskyi Y, Chernolevska Y, Pogorelov V. FTIR study of condensed water structure. Journal of Molecular Structure. 2018;1167:232-238. https://doi.org/10.1016/j.molstruc.2018.05.002
[26] Chenwei C, Zhipeng T, Yarui M, Weiqiang Q, Fuxin Y, Jun M, Jing X. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly (vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings. 2018;123:176-184. https://doi.org/10.1016/j.porgcoat.2018.07.001
[27] Slaný M, Jankovič Ľ, Madejová J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Applied Clay Science. 2019;176:11-20. https://doi.org/10.1016/j.clay.2019.04.016
[28] Jha S, Mehta S, Chen Y, Ma L, Renner P, Parkinson DY, Liang H. Design and synthesis of lignin-based flexible supercapacitors. ACS Sustainable Chemistry & Engineering. 2019;8(1):498-511. https://doi.org/10.1021/acssuschemeng.9b05880
[29] Patil PB, Parit SB, Waifalkar PP, Patil SP, Dongale TD, Sahoo SC, Kollu P, Nimbalkar MS, Patil PS, Chougale AD. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Materials Letters. 2018;223:178-181. https://doi.org/10.1016/j.matlet.2018.04.008
[30] Zhu HQ, Zhao HR, Wei HY, Wang W, Wang HR, Li K, Lu XX, Tan B. Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal. Combustion and Flame. 2020;216:354-368. https://doi.org/10.1016/j.combustflame.2020.03.007
[31] Litke A, Frei H, Hensen EJ, Hofmann JP. Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. Journal of Photochemistry and Photobiology A: Chemistry. 2019;370:84-88. https://doi.org/10.1016/j.jphotochem.2018.10.023
[32] Tarar MA, Khan AH, Ur Rehman Z, Qamar S, Akhtar MN. Compatibility of sunflower oil with asphalt binders: a way toward materials derived from renewable resources. Materials and Structures. 2020;53:1-5. DOI:10.1617/s11527-020-01506-8
[33] Çalışır Ü, Çiçek B. Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics. Chemical Papers. 2020;74(10):3293-3302. https://doi.org/10.1007/s11696-020-01158-6
[34] Roy DR, Shah EV, Roy SM. Optical activity of Co-porphyrin in the light of IR and Raman spectroscopy: a critical DFT investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;190:121-128. https://doi.org/10.1016/j.saa.2017.08.069
[35] Saremi LH, Noshahr KD, Ebrahimi A, Khalegian A, Abdi K, Lagzian M. Multi-stage screening to predict the specific anticancer activity of Ni(II) mixed-ligand complex on gastric cancer cells; biological activity, FTIR spectrum, DNA binding behavior and simulation studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;251:119377. https://doi.org/10.1016/j.saa.2020.119377
[36] Izquierdo-Lorenzo I, Sánchez-Cortés S, García-Ramos JV. Trace detection ofaminoglutethimide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Analytical methods. 2011;3(7):1540-1545. https://doi.org/10.1039/c1ay05032j
[37] Ali M, Mujtaba-ul-Hassan S, Ahmad J, Khurshid A, Shahzad F, Iqbal Z, Mehmood M, Waheed K. Fabrication of PEGylated Porous Alumina Whiskers (PAW) for drug delivery applications. Materials Letters. 2019;241:23-26. https://doi.org/10.1016/j.matlet.2019.01.044
[38] Stalin N, Shobhanadevi N. Studies on thermal, structural, and compositional properties of agro-waste jute fiber composite reinforced with cardanol resin. Biomass Conversion and Biorefinery. 2021; 12:10413-10420. https://doi.org/10.1007/s13399-021-01958-0
[39] Kumar MM, Kumari SB, Kavitha E, Velmurugan B, Karthikeyan S. Spectral profile index changes as biomarker of toxicity in Catla catla (Hamilton, 1822) edible fish studied using FTIR and principle component analysis. SN Applied Sciences. 2020;2:1233-1243. https://doi.org/10.1007/s42452-020-3001-z
[40] Herrera-Kao WA, Loría-Bastarrachea MI, Pérez-Padilla Y, Cauich-Rodríguez JV, Vázquez-Torres H, Cervantes-Uc JM. Thermal degradation of poly (caprolactone), poly (lactic acid), and poly (hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin. 2018;75:4191-4205. https://doi.org/10.1007/s00289-017-2260-3
[41] Kurbah SD. Dioxido-vanadium(V) complex catalyzed oxidation of alcohols and tandem synthesis of oximes: A simple catalytic protocol for C–N bond formation. Journal of Coordination Chemistry. 2021;74(4-6):905-918. https://doi.org/10.1080/00958972.2021.1876230
[42] Geng S, Ren N, Zhang YY, Tang K, Zhang JJ. Studies on preparation, crystal structure, thermal properties and fluorescence properties of rare earth complexes composed of 2-chloro-4-fluorobenzoic acid and 2,2':6′,2 ″-terpyridine. Journal of Solid State Chemistry. 2022;305:122633. https://doi.org/10.1016/j.jssc.2021.122633
[43] He Z, Liu H, Yang G, Jiang C, Ji M, Yu J, Wang M, Zhu C, Xu J. Cyclization mechanism and kinetics of poly (acrylonitrile-co-2-acrylamido-2-methylpropane sulfonic acid) copolymer investigated by FTIR spectroscopy. Polymer Testing. 2021;93:106969. https://doi.org/10.1016/j.polymertesting.2020.106969
[44] Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, Manjili HK, Davaran S, Danafar H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International journal of biological macromolecules. 2018;115:83-89. https://doi.org/10.1016/j.ijbiomac.2018.04.043
[45] Periasamy A, Muruganand S, Palaniswamy M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J. Chem. 2009;2(4):981-989.
[46] Jiao L, Xiao H, Wang Q, Sun J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability. 2013;98(12):2687-2696. https://doi.org/10.1016/j.polymdegradstab.2013.09.032
[47] Platero EE, Mentruit MP, Areán CO, Zecchina A. FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate. Journal of Catalysis. 1996;162(2):268-276. https://doi.org/10.1006/jcat.1996.0284
[48] Balachandran V, Parimala K. Tautomeric purine forms of 2-amino-6-chloropurine (N9H10 and N7H10): Structures, vibrational assignments, NBO analysis, hyperpolarizability, HOMO–LUMO study using B3 based density functional calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;96:340-351. https://doi.org/10.1016/j.saa.2012.05.050
[49] Kumar S, Koh J. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite. International journal of biological macromolecules. 2014;70:559-564. https://doi.org/10.1016/j.ijbiomac.2014.07.019
[50] Ghanbari K, Bonyadi S. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid. International Journal of Polymer Analysis and Characterization. 2020;25(3):105-125. https://doi.org/10.1080/1023666X.2020.1766785
[51] Abbaspour S, Nourbakhsh A, Ebrahimi R, Ghayour H, Mackenzie KJ. The effect of nanoparticle and mesoporous TiO2 additions on the electronic characteristics of reduced graphene oxide nanocomposites with zinc oxide under UV irradiation. Materials Science and Engineering: B. 2019;246:89-95. https://doi.org/10.1016/j.mseb.2019.06.003
[52] Abbasian M, Roudi MM, Mahmoodzadeh F, Eskandani M, Jaymand M. Chitosan-grafted-poly (methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. International journal of biological macromolecules. 2018;118:1871-1879. https://doi.org/10.1016/j.ijbiomac.2018.07.036
[53] Zarei M, Zolfigol MA, Moosavi-Zare AR, Noroozizadeh E. Trityl bromide versus nano-magnetic catalyst in the synthesis of henna-based xanthenes and bis-coumarins. Journal of the Iranian Chemical Society. 2017;14:2187-2198. https://doi.org/10.1007/s13738-017-1155-4
[54] Kiasat AR, Hemat-Alian L. Phospho sulfonic acid: a versatile and efficient solid acid catalyst for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes under solvent-free conditions. Research on Chemical Intermediates. 2015;41:873-880. https://doi.org/10.1007/s11164-013-1239-4
[55] Mahmoodi NO, Jalalifard Z, Fathanbari GP. Green synthesis of bis‐coumarin derivatives using Fe(SD)3 as a catalyst and investigation of their biological activities. Journal of the Chinese Chemical Society. 2020;67(1):172-182. https://doi.org/10.1002/jccs.201800444
[56] Tabatabaeian K, Heidari H, Khorshidi A, Mamaghani M, Mahmoodi NO. Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium (III) chloride hydrate as a versatile homogeneous catalyst. Journal of the Serbian Chemical Society. 2012;77(4):407-413. DOI: 10.2298/JSC110427189T
[57] Patil SK, Awale DV, Vadiyar MM, Patil SA, Bhise SC, Kolekar SS. Simple protic ionic liquid [Et3 NH][HSO4] as a proficient catalyst for facile synthesis of biscoumarins. Research on Chemical Intermediates. 2017;43:5365-5376. https://doi.org/10.1007/s11164-017-2932-5
[58] Banday SM, Amin A, Bashir S, Qadri RA, Khan KZ, Rizvi MA. Anti-metastatic propensity of biscoumarin scaffold synthesized under catalyst free aqueous phase microwave irradiation. Croatica Chemica Acta. 2017;90(3):471-480. https://doi.org/10.5562/cca3136
[59] Parvanak Boroujeni K, Ghasemi P, Rafienia Z. Synthesis of biscoumarin derivatives using poly (4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst. Monatshefte für Chemie-Chemical Monthly. 2014;145:1023-1026. https://doi.org/10.1007/s00706-014-1156-2
[60] Faisal M, Larik FA, Saeed A. A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst. Journal of Porous Materials. 2019;26:455-466. https://doi.org/10.1007/s10934-018-0625-0
[61] Shirini F, Lati MP. BiVO4-NPs: an efficient nano-catalyst for the synthesis of biscoumarins, bis (indolyl) methanes and 3, 4-dihydropyrimidin-2 (1 H)-ones (thiones) derivatives. Journal of the Iranian Chemical Society. 2017;14:75-87. https://doi.org/10.1007/s13738-016-0959-y
[62] Sethiya A, Teli P, Manhas A, Agarwal D, Soni J, Sahiba N, Jha P, Agarwal S. Carbon-SO3H: An efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. Synthetic Communications. 2020;50(16):2440-2460. https://doi.org/10.1080/00397911.2020.1780613
 
[63] Hayati P, Eghbali K, Rezaei R. Magnetic nanoparticles tris (hydrogensulfato) boron as an efficient heterogeneous acid catalyst for the synthesis of α, ά-benzylidene bis (4-hydroxycoumarin) derivatives under solvent-free condition. Research on Chemical Intermediates. 2019;45(10):5067-5089. https://doi.org/10.1007/s11164-019-03881-6
[64] Khurana JM, Kumar S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano [c] chromene derivatives in water and solvent-free conditions. Tetrahedron Letters. 2009;50(28):4125-4127. https://doi.org/10.1016/j.tetlet.2009.04.125