بررسی نظری خواص الکترونی و مغناطیسی نانوروبان های گرافنی با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود، دانشکده فیزیک و مهندسی هسته ای، شاهرود، ایران

2 دانشگاه صنعتی شاهرود، دانشکده فیزیک و مهندسی هسته‌ای، شاهرود، ایران

چکیده

در این مقاله، خواص الکترونی، ساختاری و مغناطیسی نانوروبان­های گرافنی هیدروژنه با لبه زیگزاگ شکل(ZGNR-H)  و دسته صندلی شکل(AGNR-H)، با استفاده از نظریه تابعی چگالی (DFT) بررسی شده است. چگالی حالتهای اسپینی و ساختار نواری برای نانو روبان های ZGNR-H و AGNR-H با پهناهای مختلف محاسبه شده است. نتایج بیانگر این است که خواص الکترونی و مغناطیسی  نانوروبان­های گرافنی به شدت به پهنای روبان و شکل لبه روبان که زیگزاگ یا دسته صندلی باشد، وابسته است. بطوریکه نانوروبان های دسته صندلی هیدروژنه همگی نیم­ رسانا غیرمغناطیسی هستند و با افزایش پهنای روبان گاف نواری روندی تناوبی و کاهشی دارد. درحالیکه نانوروبان های گرافنی هیدروژنه زیگزاگ با پهناهای مختلف، همگی فلز مغناطیسی هستند و مقادیر گشتاور مغناطیسی برای نانوروبان هایZGNR-H با افزایش پهناهای روبان افزایش می­ یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Theoretical investigation of electronic and magnetic properties of graphene nanoribbons using density functional theory

نویسندگان [English]

  • tayebeh movlarooy 1
  • parvin zanganeh 2
1 Faculty of Physics and Nuclear Engineering; Shahrood University of Technology; Shahrood; Iran
2 aculty of Physics and Nuclear Engineering; Shahrood University of Technology; Shahrood; Iran
چکیده [English]

In this article, the electronic, structural and magnetic properties of hydrogenated graphene nanoribbons with zigzag-shaped edges (ZGNR-H) and armchair-shaped edges (AGNR-H) have been investigated using density functional theory (DFT). The spin density of states and band structure have been calculated for ZGNR-H and AGNR-H nanoribbons with different widths. The results show that the electronic and magnetic properties of graphene nanoribbons are strongly dependent on the width of the ribbon and the shape of the edge of the ribbon, which is zigzag or armchair. So that the hydrogenated armchair ribbons are all non-magnetic semiconductors and with the increase in the width of the ribbon, there is a periodic and decreasing bandgap trend. While zigzag hydrogenated graphene nanoribbons with different widths are all magnetic metal and the values of magnetic moment for ZGNR-H nanoribbons increase with increasing of ribbon widths.

کلیدواژه‌ها [English]

  • graphene nanoribbon
  • density functional theory
  • magnetic properties
  • electronic properties
 
[1] Treske U, Ortmann F, Oetzel B, Hannewald K, Bechstedt F. Electronic and transport properties of graphene  nanoribbons. physica status solidi (a). 2010:207(2):304-308. https://doi.org/10.1002/pssa.200982445
[2] Geim A, Novoselov K. The rise of graphene. Nature Mater 2007:6, 183–191. https://doi.org/10.1038/nmat1849.
[3] Bolotin K. I., Sikes K. J.  , Jiang Z. , Klima M. , Fudenberg G. , Hone J. , Stormer H. L.Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008:146(9), 351-355.
https://doi.org/10.1016/j.ssc.2008.02.024
[4] Yang L. , Park C. H., Son Y. W. , Cohen M. L. Louie S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Physical Review Letters. 2007:99(18),186801. https://doi.org/10.1103/PhysRevLett.99.186801
[5] Kheirabadi N, Shafiekhani A, Fathipour M, Review on graphene spintronic, new land for discovery. Superlattices and Microstructures 2014:74, 123-145. https://doi.org/10.1016/j.spmi.2014.06.020.
[6] Chauhan S. S., Srivastava P., Shrivastava A .K. Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach, Appl Nanosci (2014) 4:461–467. DOI 10.1007/s13204-013-0220-2
[7] Ordejón P, Artacho E and Soler J M. Self-consistent order-N density-functional calculations for very large systems. Physical Review B 1996:53,441. https://doi.org/10.1103/PhysRevB.53.R10441.
[8] Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett.1997:77,3865. https://doi.org/10.1103/PhysRevLett.77.3865.
[9] Artacho E, Sánchez-Portal D, Ordejón P, García A. Soler J. M.. Linear-Scaling ab-initio Calculations for Large and Complex Systems. phys. stat. sol. (b) 1999: 215(1), 809–817. doi:10.1002/(sici)1521-3951(199909)215:1<809::aid-pssb809>3.0.co;2-0.
[10] An L. P, Liu N. H, The spin-dependent transport properties of zigzag graphene nanoribbon edge-defect junction. New Carbon Materials 2012:27(3),181-187. https://doi.org/10.1016/S1872-5805 (12)60012-2.
[11] Jaiswal N. K, Srivastava P. First principles calculations of armchair graphene nanoribbons interacting with Cu atoms. Physica E: Low-dimensional Systems and Nanostructures 2011:44(1),75-79. Doi:10.1016/j.physe.2011.07.009
[12] Jaiswal N. K., Srivastava P. Ab-Initio Study of Transition Metal (Ni) Interaction with Zigzag Graphene Nanoribbons, Journal of Computational and Theoretical Nanoscience 2012:9(4), 555-559. DOI:10.1166/jctn.2012.2060.
[13] Son Y. W, Cohen M. L., and Louie S. G, Energy gaps in graphene nanoribbons. Physical review letters 2006:97, 216803. https://doi.org/10.1103/PhysRevLett.97.216803
[14] Barone V, Hod O, and Scuseria G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano letters. 2006: 6 (12) 2748–2754. https://doi.org/10.1021/nl0617033