رسانندگی دیفرانسیلی منفی در ابر شبکه‌های نیم‌رسانا با استفاده از معادلات پاشندگی ریزنوار سهموی و سینوسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

2 گروه فیزیک، دانشکدۀ علوم پایه، دانشگاه بوعلی سینا، همدان

چکیده

نیاز به افزاره­های عمل­کننده در دمای اتاق و آشکارسازهای تابش در محدوده تراهرتز (10-0/2) وجود دارد. این نیاز توسط پیشرفت­های سریع علوم و فناوری­های تراهرتز در گستره­ای از نجوم تا زیست امنیتی ایجاد می­شود. با توسعه برآرائی پرتو مولکولی (MBE) رشد ابرشبکه­های نیم­رسانا از مرتبه­ی°A ١٠٢ انجام می ­شود. این ثابت شبکه بزرگ بوده  و می­تواند رفتارهای غیراهمی میدان بالا را آشکار کند. اثر رسانندگی دیفرانسیلی منفی (NDC) از تعداد زیادی الکترون در لبه مرز ریز نوار ناشی می­شود. با نزدیک شدن الکترون­ها به مرز ریز نوار سرعت آن­ها کاهش یافته و باعث اثر (NDC) می­شود. در این مقاله، NDC در ابر شبکه های نیم­رسانا برای پتانسیل های سینوسی و دوره ای چاه مربعی بررسی شد. سرعت های سوق حامل استخراج شده در یک ابرشبکه به ترتیب در حدود 1.8x105 m/s و 2.6x105 m/s و نسبت بیشینه سرعت سوق به کمینه متناظر در هر دو پتانسیل بیش از 3 به دست آمد. همچنین، NDC در ابر شبکه­های نیم­رسانا برای معادلات پاشندگی سهموی و سینوسی در فرکانس­های مختلف مطالعه شد. در معادله پاشندگی سهموی، نزدیک نوسانات هارمونیک بلاخ در فرکانس­های بین نوسان­های زوج و فرد هارمونیک، NDC فرکانس بالا مشاهده شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Negative differential conductivity in semiconductor superlattices using parabolic and sinusoidal miniband dispersion equations

نویسندگان [English]

  • Ghassem Ansaripour 1
  • Samira Shabani Bahari 2
1 Department of Physics, Bu-Ali Sina University, Hamedan
2 Department of Physics, Bu- Ali Sina University, Hamedan
چکیده [English]

Radiative detectors and devices operating in the range (0.2-10) terahertz and room temperature are needed. The need is created by fast advances of the science and terahertz technologies in the domain of astronomy to biosecurity. By the advances of molecular beam epitaxy (MBE) the growth of semiconductor superlattices of the order of 100 A° is performed. This lattice constant is big and could reveal high field non-ohmic behaviors. The negative differential conductivity (NDC) arises from the grate numbers of electrons in the proximity edge of miniband boundary. The velocity of electrons approaching to the miniband is reduced, causing the NDC effect. In this article the NDC in semiconductor superlattices for sinusoidal and periodic square -well potentials was studied. The extracted maximum carrier drift velocities for a superlattice semiconductor were nearly 1.8x105 m/s and 2.6x105 m/s respectively and the obtained ratio of maximum drift velocity to the corresponding minimum was more than 3 for the two potentials. Also the NDC in semiconductor superlattices for parabolic and sinusoidal dispersion equations at different frequencies was investigated. In the parabolic dispersion equation, near the harmonic Bloch oscillations at frequencies between even and odd harmonic oscillations, the high frequency NDC was observed.

کلیدواژه‌ها [English]

  • Keywords: Superlattices
  • Semiconductor
  • Bloch oscillations
  • Miniband
  • Parabolic and sinusoidal dispersion
  • Negative differential conductivity
[1] Rasulova G. Terahertz emission induced by self-oscillations of current in semiconductor resonant tunneling structures. International Scientific Journal Science Business Society. 2023;8(1):7-9
[2] Romanov YA. On the differential conductivity of semiconductor superlattices. Physics of the Solid State. 2003; 45(3):55965. doi:10.1134/1.1562247
[3] Shaker A, Ossaimee M. Current oscillations in Schottky-barrier CNTFET: towards resonant tunneling device operation. Semiconductor Science and Technology. 2018; 33(3):035012. doi:10.1088/1361-6641/aaa912
[4] Keles O, Karahan BD, Eryilmaz L, Amine R, Abouimrane A, Chen Z, et al. Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries. Nano Energy.2020;76:105094.doi:10.1016/j.nanoen.2020.105094
[5] Vetrova N, Kuimov E, Meshkov S, Makeev M, Sinyakin V, Shashurin V. A Compact Current-Transfer Model in Resonant-Tunneling Structures with Consideration of Interelectronic Interaction. Electronics.2023;12(3):519.doi:10.3390/electronics12030519
[6] Ramsey J, Pan E, Chung PW, Wang ZM. Superlattice Growth via MBE and Green's Function Techniques. Nanoscale Res Lett. 2010;5(8):1272-8.doi:10.1007/s11671-010-9636-8
[7] Ren J, Segal-Peretz T, Zhou C, Craig GSW, Nealey PF. Three-dimensional superlattice engineering with block copolymer epitaxy. Sci Adv.2020;6(24):eaaz0002. doi:10.1126/sciadv.aaz0002
[8] Xu J-P, Zhu J-T. Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly. Chinese Journal of Polymer Science. 2019;37(8):744-59.doi:10.1007/s10118-019-2294-0
[9] Shim J, Bates FS, Lodge TP. Superlattice by charged block copolymer self-assembly. Nat Commun.2019;10(1):2108.doi:10.1038/s41467-019-10141-z
[10] Thorat AV, Ghoshal T, Morris MA. Silver Nanopatterned Surfaces by Block Copolymer Inclusion and Biomineralization. Advanced Science, Engineering and Medicine. 2016;8(11):841-8.doi:10.1166/asem.2016.1923
[11] Esaki L, Tsu R. Superlattice and Negative Differential Conductivity in Semiconductors. IBM Journal of Research and Development. 1970;14(1):61-5.doi:10.1147/rd.141.0061
[12] Pippard AB, Johnson GG. The Dynamics of Conduction Electrons. Physics Today. 1966;19(1):117-9.doi:10.1063/1.3047919
[13] Lebwohl PA, Tsu R. Electrical Transport Properties in a Superlattice. Journal of Applied Physics.1970;41(6):2664-7. doi:10.1063/1.1659279
[14] Romanov YA, Mourokh LG, Horing NJM. Negative high-frequency differential conductivity in semiconductor superlattices. Journal of Applied Physics.2003;93(8):4696703. doi:10.1063/1.1562003
[15] Zener.C. A theory of the electrical breakdown of solid dielectrics. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1934;145(855):523-9.doi:10.1098/rspa.1934.0116
[16] Feldmann J, Leo K, Shah J, Miller DA, Cunningham JE, Meier T, et al. Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys Rev B Condens Matter.1992;46(11):7252-5. doi:10.1103/physrevb.46.7252
[17] Ktitorov S, Simin G, Sindalovskii V. Bragg reflections and the high- frequency conductivity of an electronic solid- state plasma. Soviet Physics—Solid State,.1972
[18] Wannier GH. Dynamics of Band Electrons in Electric and Magnetic Fields. Reviews of Modern Physics.1962;34(4):64555.doi:10.1103/RevModPhys.34.64
[19] Orlov LK, Romanov YA. Nonlinear Resonant Peculiarities of Superlattice Electric Characteristics in Conditions of Strong Intersubband Electron Tunneling. Fizika Tekhnika Poluprovodnikov. 1985
[20] Chang YC, James RB. Saturation of intersubband transitions in p-type semiconductor quantum wells. Phys Rev B Condens Matter. 1989;39(17):1267281.doi:10.1103/physrevb.39.12672
[21] Gribnikov ZS, Vagidov NZ, Korshak AN, Mitin VV. Negative-effective-mass ballistic field-effect transistor: Theory and modeling. Journal of Applied Physics.2000;87(10):746675.doi:10.1063/1.373011