ساخت نانوچندسازه CoMnFeO4/ PANI با استفاده از روش بسپارش درجا و بررسی ویژگی‌های ساختاری، مغناطیسی و نوری آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز،ایران

چکیده

چکیده: تحقیق حاضر به ساخت فریت کبالت منگنز در حضور پلی آنیلین پرداخته و ویژگی‌های ساختاری، مغناطیسی و نوری کامپوزیت حاصل را مورد بررسی قرار می‌دهد. نمونه‌ها با استفاده از روش پلیمریزاسیون درجا تهیه شدند. سپس آنالیزهای پراش اشعه ایکس (XRD) و طیف‌سنجی تبدیل فوریه- مادون قرمز (FT-IR) به جهت مطالعات ساختاری و آنالیزهای FE-SEM و TEM به جهت بررسی مورفولوژی و ریزساختار نمونه‌های تهیه شده مورد استفاده قرار گرفت. ویژگی‌های مغناطیسی نمونه‌ها به کمک مغناطیس‌سنج نمونه نوسانی (VSM) مورد بررسی قرار گرفت. بررسی ویژگی‌های مغناطیسی نمونه‌ها نشان داد که مقدار مغناطش اشباع در دو نمونه به ترتیبemu/g 7/53 و 6/18 می‌باشد. این نتایج نشان می‌دهند که با استفاده از پلیمر تا حدودی می‌توان ویژگی‌های مغناطیسی فریت‌ها را کنترل کرد. هم‌چنین ویژگی‌های اپتیکی نمونه‌ها توسط آزمایش طیف‌سنجی جذب مرئی – فرابنفش مورد بررسی قرار گرفت. دو گاف اپتیکی با روش تاک eV 19/2 و eV 46/4 و گاف انرژی نواری با استفاده از نمودار PL برای نمونه CoMnFeO4 / PANI، eV 73/2 به دست آمده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication of CoMnFeO4/PANI nanocomposite using in situ polymerization method and investigation of their structural, magnetic, and optical properties

نویسندگان [English]

  • Seyed Ebrahim Mousavi Ghahfarokhi 1
  • Hosien Toulabinezhad 2
  • iraj Kazeminezhad 2
1 , Department of Physics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Abstract: The present research deals with the fabrication and investigation of manganese cobalt ferrite's structural, magnetic and optical properties in the presence of polyaniline. The samples were prepared using in situ polymerization method. Then, the structural characteristics of the samples were analyzed by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The magnetic properties of the samples were investigated by using Oscillating Sample Magnetometer (VSM). Examining the magnetic properties of the samples showed that the saturation magnetization value in both samples is 53.7 and 18.6 emu/g, respectively. These results show that the magnetic properties of ferrites can be controlled by using a polymer. Also, the optical properties of the samples were investigated by UV/visible absorption spectrometry. Two optical gaps were obtained by the Tauc method, 2.19 eV and 4.46 eV, and band gap energy was obtained at 2.73 eV using the PL for S2 sample.

کلیدواژه‌ها [English]

  • CoMnFeO4 nanoparticles
  • in situ polymerization method
  • structural characteristics
  • optical characteristics
[1] A. E. Elkholy, F. E.-T. Heakal, and N. K. Allam, “Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors,” RSC advances. 82, 51888-51895, 2017.
[2] B. Bhujun, M. T. T. Tan, A. S. Shanmugam, “Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications Results phys. 7, 345–353, 2017.
[3] X. Bao, J. Zhu, X. Gao, Y. Qiao and S. Zhou, “Exchange interactions and magnetization reversal of nanocrystalline (NdDyTb) 12.3 (FeZrNbCu) 81.7 B6. 0 ribbons with Co substitution”, Journal of magnetism and magnetic materials.12, 1832–1837,2009.
[4] M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang , S. Li, “Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors”, RSC Advance.49, 39270–39277,2015.
[5] V. V. Jadhav, M. K. Zate, S. Liu, M. Naushad, R. S. Mane, K. N. Hui, S. Han, “Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application“, Applied nanoscience. 6, 511–519,2016.
 [6] L. Liu, H. Zhang, Y. Mu, Y. Bai, Y. Wang, “Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors”, J. Power sources. 327, 599–609, 2016.
[7] E. N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, and G. Perale, “Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review,” Journal of medicinal chemistry, 1, 1-22, 2019.
[8] A. Eftekhari, L. Li, and Y. Yang, “Polyaniline supercapacitors,” Journal of power sources, 347, 86-107, 2017.
[9] Y. Wang et al., “Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage,” Journal of materials chemistry A, 41, 20778-20790, 2015.
[10] H. B. Zhao, J. Yang, T. T. Lin, Q. F. Lu, G. Chen, “Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance,” Chemistry,2,682-90,2015.
 
 [11] Y. Zhao, J. Zhang, “Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics,” Journal of applied crystallography, 6, 1095-1108, 2008.
[12] P. M. Shafi, A. Ch. Bose, “Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals,” AIP advances, 5, 057137, 2015.
[13] S. E. Ghahfarokhi, M. Ahmadi, I. Kazeminezhad, “Effects of Bi3+ substitution on structural, morphological, and magnetic properties of cobalt ferrite nanoparticles,” Journal of superconductivity and novel magnetism, 10, 3251-3263, 2019.
[14] J. Hornstra, W. J. Bartels, “Determination of the lattice constant of epitaxial layers of III-V compounds”, J. cryst growth 44, 513 ,1978.
[15] J. L.M. Rupp, A. Infortuna, L. J. Gauckler,” Microstrain and self-limited grain growth in nanocrystalline ceria ceramics”, Acta materialia 54, 1721–1730, 2006.
[16] R. K. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, “Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles” , J. alloys compd. 669, 19–28, 2016.
 [17] E. Davis, N. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 0903-0922 1970.
 [18] Kh. HelfiS. E. Mousavi Ghahfarokhi , M. Zargar Shoushtari, “Structural, magnetic, optical, and photocatalytic properties of Bi1-xSmxFe1-yCryO3 nanostructure synthesized by hydrothermal method,” Applied physics A.129, 2023.
 [19] M. A. Alshehawy, D. A. Mansour, M. Ghali, “Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil,” Processes. 5, 732-747,2021.
[20] M. A. Alshehawy, D. A. Mansour, M. Ghali, “Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil,” Processes. 5, 732-747,2021.
[21] M. Farbod, R. Taheri, “Preparation, characterization and photocatalytic performance of phosphorene/MoS2 as a 2D hybrid semiconductor,” Materials science in semiconductor processing. 2020.
[22] J. Liqianga, Q. Yichuna , W.Baiqia, L. Shudana , Jiang Baojianga , Y. Libina , F. Weia , F. Hongganga, S. Jiazhongb, “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”, Solar energy materials & solar cells. 90, 1773–1787, 2006.
[23] Michael A. Reshchikova, “Measurement and analysis of photoluminescence in GaN”, Journal of applied physics 129, 2021.
[24] S. K. Singh, A. K. Verma, R. K. Shukla, “Synthesis and optical studies of pure polyaniline film”, Int.J.Curr.Microbiol.App.Sci, 3, 512-517,2014.