بررسی ویژگیهای نوری و نوسانات پلاسمونی نانوساختار تک حلقه مارپیچی منگنز

نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک ، دانشگاه آزاد اسلامی واحد میبد ، میبد

چکیده

لایه های نازک نانوساختار تک حلقه مارپیچی منگنز با استفاده از روش همزمان لایهنشانی مایل و چرخش زیرلایه حول
به دست آمده SEM و FESEM محور عمود بر آن تهیه شده است. ویژگیهای ساختاری نمونه تولید شده با استفاده ازتصاویر
است. با استفاده از طیفسنجی تک باریکهای، طیف نوری نمونه برای نور تابشی عمود بر سطح به دست آمده است. سپس، با
˚ استفاده از مدل همگنسازی، طیف جذب برای نور پلاریزه خطی در زاویه تابشی 0 و زوایای سمتی متفاوت به دست آمد. نتایج به
دست آمده سازگاری خوبی با طیف جذب تجربی دارد. همچنین، با استفاده از تقریب دوقطبی منفصل نوع نوسانات پلاسمونی در
داخل نانوحلقه مارپیچی بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the optical Properties and plasmonic oscillations of nano-structure of Manganese Chiral Single Ring

نویسنده [English]

  • MAHSA Fakharpour
Department physics,,Islamic azad university Meybod,Meybod, iran
[1] B.N. Khlebtsov, V.A. Khanadeyev, J. Ye, D.W. Mackowski, G. Borghs, N.G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Physical Review B, 77, 035440-035448, 2008.
[2] P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” The journal of physical chemistry B, 110, 7238–7248, 2006.
[3] J.C. Riboh, A. J. Haes, A.D. McFarland, C. Ranjit, R.P. Van Duyne, “A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion,” The Journal of Physical Chemistry B, 107, 1772-1780, 2003.
 [4] K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced raman scattering,” Journal of the American Chemical Society, 125, 588-593, 2003.
[5] J.J. Storhoff, R. Elghanian, R.C. Mucic, C.A. Mirkin, R. L. Letsinger, “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes,” Journal of the American Chemical Society, 120, 1959-1964, 1998.
 [6] N.L. Rosi, C.A. Mirkin, “Nanostructures in biodiagnostics,” Chemical reviews, 105, 1547-1562, 2005.
[7] S. Pal, Y.K. Tak, J.M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 73, 1712-1720, 2007.
 [8] J.B. Pendry, “Playing tricks with light,” Science, 285, 1687-1688, 1999.
[9] S.A. Maier, P. G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature materials, 2, 229-232, 2003.
 [10] J.Z. Zhang, C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics, 3, 127-150, 2008.
[11] Z.Y. Zhang, Y.P. Zhao, “Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method,” Applied physics letters, 90, 221501, 2007.
 [12] A.P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, 271, 933-937, 1996.
[13] P.C. Andersen, K.L. Rowlen, “Brilliant optical properties of nanometric noble metal spheres, rods, and aperture arrays,” Applied Spectroscopy, 56, 124A-135A, 2002.
 [14] P.N. Bartlett, J.J. Baumberg, S. Coyle, M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss, 125, 117-132, 2004.
[15] F. Flory, L. Escoubas, “Optical properties of nanostructured thin films,” Progress in quantum electronics, 28, 89-112, 2004.
[16] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, “The Optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The journal of physical chemistry B, 107, 668–677, 2003.
[17] N.O. Young, J. Kowal, “Optically active fluorite films,” Nature, 183, 104-105, 1959.
 [18] T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Applied optics, 28, 2466-2482, 1989.
[19] K. Robbie, M.J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 15, 1460-1665, 1997.
[20] A.C. van Popta, J. C. Sit, M. J. Brett, “Optical properties of porous helical thin films,” Applied optics, 43, 3632-3639, 2004.
 [21] Z.Y. Zhang, Y.P. Zhao, “Optical properties of helical and multiring Ag nanostructures: The effect of pitch height,” Journal of Applied Physics, 104, 013517, 2008.
[22] H. Savaloni, M. Fakharpour, A. Siabi Gargan, F. Placido, F. Babaei, “Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films,” Applied Surface Science, 393, 234-255, 2017.
[23] M. Fakharpour, F. Babaei, H. Savaloni, “Engineering Mn as tetragonal-like helical sculptured thin film for broadband absorption,” Plasmonics, 11, 1579-1804, 2016.
[24] O.A. Yeshcheno, I. M. Dmitruk, A.A. Alexeenko, A. M. Dmytruk, “Optical properties of sol–gel fabricated Mn/SiO2 nanocomposites: Observation of surface plasmon resonance in Mn nanoparticles,” Applied Surface Science, 25, 2736-2742, 2008.
[25] K.R. Podolak, J.A. Smith, S.B. Wagner, “Manganese doping influence on the plasmon energy of nickel films,” Surface science, 606, 996-998, 2012.
[26] A. Lakhtakia, “Axial loading of a chiral sculptured thin film,” Modelling and Simulation in Materials Science and Engineering, 8, 677-680, 2000.‏
[27] A. Lakhtakia, “On percolation and circular Bragg phenomenon in metallic, helicoidally periodic, sculptured thin films,” Microwave and Optical Technology Letters, 24, 239-244, 2000.
[28] F. Babaei, H. Savaloni, “On the dependence of circular Bragg phenomenon of noble metals helicoidally periodic sculptured thin films on visible and IR wavelengths,” Optics communications, 278, 221-231, 2007.
[29] A. Lakhtakia, R. Messier, “Sculptured thin films: Nanoengineered morphology and optics,” SPIE. USA, 2005.
[30] F. Babaei, “On circular Bragg regimes in ellipsometry spectra of ambichiral sculptured thin films,” Journal of Modern Optics, 60, 886-890, 2013.
[31] F. Babaei, “On optical rotation and selective transmission in ambichiral sculptured thin films,” Journal of Modern Optics, 60, 1370-1375, 2013.
[32] A.L. Elias, K.D. Harris, C.W.M. Bastiaansen, “Large-area microfabrication of three-dimensional, helical polymer structures,” Journal of micromechanics and microengineering, 15, 49-56, 2005.
[33] A. Elias, M. Brett, K.  Harris, “Three techniques for micropatterning liquid crystalline polymers,” Molecular Crystals and Liquid Crystals, 477, 137-151, 2007.
[34] A.L. Elias, M.J. Brett, Sousa, “Template induced chiral ordering in nematic liquid crystalline materials: A deuterium nuclear magnetic resonance study,” Journal of Applied Physics, 99, 116105-116110, 2006.
[35] E. M. Purcell, C.R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J, 186, 705-714, 1973.
 [36] L. Eckertova, “Physics of Thin Films,” chapter 1, Plenum Press, 2nd edition, 1990.
[37] H. Savaloni, F. Babaei, S. Song, F. Placido, “Characteristics of sculptured Cu thin films and their optical properties as a function of deposition rate,” Applied Surface Science, 255, 8041–8047, 2009.
[38] F. Babaei, H. Savaloni, “Reflection, transmission and circular dichroism in axially excited slab of a copper thin film helicoidal bianisotropic medium,” Optics communications, 278, 321-328, 2007.
[39] F. Babaei, H. Savaloni, “Numerical study of the remittances of axially excited chiral sculptured zirconia thin films,” Journal of Modern Optics, 55, 1845-1857, 2008.
[40] J.A. Sherwin, A. Lakhtakia, I. J. Hodgkinson, “On calibration of a nominal structure–property relationship model for chiral sculptured thin films by axial transmittance measurements,” Optics communications, 209, 369-375, 2002.
[41] E.D. Palik, “Handbook of Optical Constants of Solids,” Academic New York, 1985.
 [42] H.E. Bennett, J.O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” JSOA, 51, 123-129, 1961.
[43] A. Azarian, F. Babaei, “Localized surface plasmons of a single ambichiral nanostructure,” Journal of Modern Optics, 62, 463-469, 2015.