بررسی خواص الکترونی نانولوله کربنی تک جداره SWCNT 7,0 با استفاده از نظریه تابعی چگالی DFT

نویسندگان

1 دانشکده فیزیک، دانشگاه صنعتی امیرکبیر )پلی تکنیک تهران(، تهران

2 دانشکده فیزیک، دانشگاه جامع امام حسین (ع)، تهران

3 دانشکده فیزیک، دانشگاه سمنان، سمنان

چکیده

در این مقاله، خواص الکترونی نانولوله کربنی تک‌جداره زیگزاگ SWCNT7,0 بررسی شد. این بررسی به روش نظریه-ی تابعی چگالی DFT و حل معادلات بس‌ذره‌ای کوهن-شم با رهیافت میدان خودسازگار SCF در تقریب چگالی موضعی LDA به انجام رسید. مورفولوژی نانولوله، استوانه‌ای با قطر مقطع Å 48/5 و جهت‌گیری رشد در جهت 100 است. بعد از انجام محاسبات همگرایی، انرژی قطع معادل eV 953 انتخاب، و فضای وارون به روش مونخورس-پک بصورت 16×1×1 مش‌بندی گردید. نتایج نشان می‌دهند گاف انرژی نانولوله‌ به علت بالا بودن نسبت سطح به حجم و بوجود آمدن تراز‌های سطحی میان گاف، کاهش می‌یابد. همچنین خواص الکترونی شامل ساختارنواری و چگالی حالت-های الکترونی نانولوله کربنی SWCNT7,0 محاسبه شد و مشخص گردید بیشینه نوار ظرفیت و کمینه نوار رسانش هر دو در نقطه Γ هستند. منشاء این دو نوار ناشی از ترازهای پیوندی π و غیرپیوندیπ که به ترتیب دارای انرژی‌هایeV 53/0- وeV 62/0 از سطح فرمی می‌باشند. لذا گاف انرژی مستقیمی به مقدار eV15/1 در نقطه Γ ایجاد شد و مطابق انتظار نانولوله در دسته مواد نیمه‌رسانا قرار گرفت. همچنین پهنای نوارهای ظرفیت و رسانش میان نقاط Γ و Z به ترتیب دارای مقادیر eV92/1 و eV 23/2 هستند، لذا خطای خودبرهمکنشی تاثیر چندانی در نتایج ندارد.

کلیدواژه‌ها


[1] G. A. Mansoori, “Advances in atomic and molecular nanotechnology”, United Nations Tech Monitor, UN-APCTT Tech Monitor, 53-59, 2002. ? [2] D. Appell, “Nanotechnology”, wired for success Nature, 553, 2002. [3] K. E. Drexler, “Building molecular machine systems”, Trends in Biotechnology, 17(1), 5-7, 1999. [4] T. Mikolajick, A.Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, and W. M. Weber, “Silicon nanowires–a versatile technology platform”. physica status solidi (RRL)–Rapid Research Letters, 7, 793-799, 2013. [5] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazque, R. Beyers, Nature 363, 605, 1993. [6] V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering: R: Reports, 43, 61-102, 2004. [7] S. Ijima, Nature 354, 56, 1991. [8] T.W. Ebbesen and P.M. Ajayan, Nature 358, 1992. [9] S. Ijima, “Helical microtubules ofgraphitic carbon”, Nature, 1991. [10] H. Shiomi, “Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes”, Japanese Journal of Applied Physics, 36, 7745, 1997. [11] A. Hirsch, “The era of carbon allotropes”, Nature materials, 9, 868, 2010. ? [12] O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, “Carbon nanostructures”, Critical Reviews in Solid State and Material Sciences, 27, 227-356, 2002. [13] http://commons.wikimedia.org/wiki/File: Types-of-Carbon-Nanotubes.png [14] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature, 382, 54, 1996. [15] S. Frank, P. Poncharal, Z. L. Wang, and W. A. De Heer, “Carbon nanotube quantum resistors”, science, 280, 1744-1746, 1998. [16] A. Rezaei, M. Masoudi, F. Sharifi, and K. Navi, “A novel high speed full adder cell based on carbon nanotube fet (cnfet)”, International Journal of Emerging Sciences, 4, 64-75, 2014. [17] M. Masoudi, M. Mazaheri, A. Rezaei, and K. Navi, “Designing high-speed, low-power full adder cells based on carbon nanotube technology”, arXiv preprint arXiv:1411.2212, 2014. [18] M. Noei, A. A. Salari, M. Madani, M. Paeinshahri, and H. Anaraki-Ardakani, “Adsorption properties of CH3COOH on (6, 0), (7, 0), and (8, 0) zigzag, and (4, 4), and (5, 5) armchair single-walled carbon nanotubes: A density functional study”, Arabian Journal of Chemistry, 10, S3001-S3006, 2017. [19] Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, “Definitive band gaps for single-wall carbon nanotubes”, The Journal of Physical Chemistry Letters, 1, 2946-2950, 2010. [20] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures”, The Journal of chemical physics, 119, 2376-2385, 2003. [21] N. H. March, “Electron density theory of atoms and molecules”, The Journal of Physical Chemistry, 86, 2262-2267, 1982. [22] R. G. Parr, W. Yang, “Density-Functional Theory of Atoms and Molecules”, Oxford University Press, New York, 1989. [23] E. Mariani, and F. von Oppen, “Flexural phonons in free-standing graphene”, Physical review letters, 100, 076801, 2008. [24] D. Waroquiers, A. Lherbier, A. Miglio, M. Stankovski, S. Poncé, M. J. Oliveira, and X. Gonze, “Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory”, Physical Review B, 87, 075121, 2013. [25] P. Mori-S?nchez, A. J. Cohen, and W. Yang, “Discontinuous nature of the exchange-correlation functional in strongly correlated systems”, Physical review letters, 102, 066403, 2009. [26] S. Pesant, P. Boulanger, M. Côté, and M. Ernzerhof, “Ab initio study of ladder-type polymers: Polythiophene and polypyrrole”, Chemical Physics Letters, 450, 329-334, 2008.