بررسی وابستگی دمایی طیف فلورسانس نانوذرات تبدیل افزایشی NaYF4:Yb3 ,Er3

نویسندگان

گروه فیزیک، دانشکده فیزیک، دانشگاه خوارزمی، تهران

چکیده

در سال های اخیر نانوذرات تبدیل افزایشی فرکانس بسیار مورد توجه قرار گرفته اند و کاربردهای متنوعی نیز پیدا کرده اند. در این پژوهش اثر دما بر روی عملکرد فوتونیکی نانوذرات تبدیل افزایشی فرکانس NaYF4:Yb3 ,Er3 مورد بررسی قرار می گیرد. بدین منظور این نانوذرات در ماتریس پلیمری قرار می گیرند و توسط لیزر ۹۸۰ نانومتر تحریک می شوند. طیف فلورسانس دارای ۴ بیشینه در نواحی قرمز، سبز و آبی است و به رنگ سبز قابل مشاهده است. سپس دمای این نانوذرات به آهستگی از 25 درجه ی سانتی گراد تا 75 درجه ی سانتی گرادافزایش و سپس کاهش داده می شود و تغییرات شدت تابش فلورسانس در بیشینه های ۵۲۵ و ۵۴۱ نانومتر مورد مطالعه قرار می گیرد. نتایج نشان می دهد که با افزایش دما شدت فلورسانس به دلیل افزایش گذار غیر تابشی از تراز برانگیخته به تراز پایین که ناشی از ارتعاشات فوتونی ماتریس میزبان NaYF4 است کاهش می‌یابد و با کاهش دما دوباره افزایش پیدا می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating theTemperature-dependentFluorescence of NaYF4: Yb3+, Er3+ Upconversion Nanoparticles

نویسندگان [English]

  • F . Kaboli
  • N. Ghazyani
  • M. H. Majles Ara
  • E. Heydari
Faculty of physics, Kharazmi, University, Tehran
چکیده [English]

Recently, upconversion nanoparticles have attracted tremendous attention and have been employed for verity of applications. Here, we investigate the impact of applying different temperatures on the optical function of NaYF4:Yb3 , Er3 upconversion nanoparticles. Therefore, upconversion nanoparticles are doped in a polymer matrix and excited with a 980 nm laser beam. Its fluorescence spectrum comprises of 4 peaks in the red, green and blue bands and appeared in green color. Then, the temperature was slowly increased from 25C° up to 75C°and subsequently decreases to investigate the fluorescence intensity at two wavelength peaks of 525 nm and 541 nm. Results indicates that the fluorescence intensity decreases by increasing the temperature, due to non-radiative decays induces by thermal de-excitation in the NaYF4 host matrix, and increase again by reducing the temperature.

کلیدواژه‌ها [English]

  • Fluorescence
  • upconversion nanoparticles
  • lanthanides
  • temperature
[1] F. Auzel, “Upconversion and anti-stokes
processes with f and d ions in solids,” Chemical
reviews, 104, 139-174, 2004.
[2] N. Menyuk, K. Dwight, and J. W. Pierce,
“NaYF4: Yb3+
, Er3+
-an efficient upconversion
phosphor,” Applied Physics Letters, 21, 159-161,
1972.
[3] G. Chen, H. Qiu, P. N. Prasad, X. Chen,
“Upconversion nanoparticles: design,
nanochemistry, and applications in theranostics,”
Chemical reviews, 114, 5161-5214, 2014.
[4] P. Kumar, S. Singh, B. K., Gupta, “Future
prospects of luminescent nanomaterial based
security inks: from synthesis to anti-counterfeiting
applications,” Nanoscale, 8, 14297-14340, 2016.
[5] O. Lehmann, H. Meyssamy, K. Kömpe, H.
Schnablegger, M. Haase, “Synthesis, growth, and
Er3+ luminescence of lanthanide phosphate
nanoparticles,” The Journal of Physical Chemistry
B, 107, 7449-7453, 2003.
[6] C. Li, J. Lin, “Rare earth fluoride
nano/microcrystals: synthesis, surface modification
and application,” Journal of Materials Chemistry,
20, 6831-6847, 2010.
[7] F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han,
H. Zhu, X. Liu, “Tuning upconversion through
energy migration in core–shell nanoparticles,”
Nature materials, 10, 968, 2011.
[8] R. B. Anderson, S. J. Smith, P. S. May, and M.
T. Berry, “Revisiting the NIR-to-visible
upconversion mechanism in β-NaYF4: Yb3+
, Er3+,”
The journal of physical chemistry letters, 5, 36-42,
2013.
[9] D. Li, Q. Shao, Y. Dong, and J. Jiang,
“Anomalous temperature-dependent upconversion
luminescence of small-sized NaYF4: Yb3+
, Er3+
nanoparticles,” The Journal of Physical Chemistry
C, 118, 22807-2281, 2014.
[10] H. Qiu, C. Yang, W. Shao, J. Damasco, X.
Wang, H. Ågren, P. Prasad, G. Chen, “Enhanced
upconversion luminescence in Yb3+/Tm3+
-codoped
fluoride active core/active shell/inert shell
nanoparticles through directed energy migration,”
Nanomaterials, 4, 55-68, 2014.
[11] M. K. Mahata, H. C. Hofsäss, U. Vetter,
“Photon-upconverting materials: advances and
prospects for various emerging applications,” In
Luminescence-An Outlook on the Phenomena and
their Applications, IntechOpen, 2016.
[12] H. H. Jaffe, A. L. Miller, “The fates of
electronic excitation energy,” Journal of Chemical
Education 43, 469, 1966.
[13] L. Liu, L. Cheng, B. Chen, J. Shang, X. Qi, Y.
Zhu, R. Hua, “Dependence of optical temperature
sensing and photo-thermal conversion on particle
۹۹8 پاییز 8931 |شماره سوم | سال ششم
size and excitation wavelength in β-NaYF4: Yb3+
,
Er3+ nanoparticles,” Journal of Alloys and
Compounds, 741, 927-936, 2018.
[14] T. Zhou, R. Luo, Y. Li, T. Li, Y. Zhao, M. Liu,
D. Gao, “Yb3+
, Tm3+ Co-doped β-NaY1-xGdxF4 (0≤
x≤ 1.00) microcrystals: Hydrothermal synthesis,
evolution of microstructures and upconversion
luminescence properties,” Journal of Luminescence,
2019.
[15] X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S.
Song, X. Liu, Y. Su, L. Dong, J. Feng, H. Zhang,
“α-NaYb(Mn)F4: Er3+/Tm3+@ NaYF4 UCNPs as
“band-shape” luminescent nanothermometers over
a wide temperature range,” ACS applied materials
& interfaces, 7, 20813-20819, 2015.
[16] D. Li, Q. Shao, Y. Dong, J. Jiang, “Thermal
sensitivity and stability of NaYF4: Yb3+
, Er3+
upconversion nanowires, nanorods and nanoplates,”
Materials Letters, 110, 233-236, 2013.
[17] L. Liu, L. Cheng, S. Xu, X. Qi, Z. Liu, X.
Zhang, B. Chen, R. Hua, “Study on optical
temperature sensing properties of β-NaYF4:
Tm3+/Yb3+ nanoparticles,” Materials Research
Bulletin, 2018.