بررسی نظری تأثیر فاصله چشمه تا زیرلایه بر لایه نشانی مس به روش تبخیر حرارتی

نویسندگان

دانشکده فیزیک، دانشگاه سمنان، سمنان

چکیده

لایه های نازک مس به طور گسترده در حسگرهای امنیتی، حسگرهای پزشکی، صفحات خورشیدی، لیزرهای قفل شده مد، درمان سرطان و .... کاربرد دارند. روش تبخیر حرارتی روش مناسبی برای ایجاد لایه های نازک مس است. فاصله بین چشمه مس و زیرلایه پارامتر مهمی است که تاکنون مورد بررسی قرار نگرفته است. بنابراین، در این مقاله تأثیر این کمیت بر فرایند ایجاد لایه نازک مس با روش تبخیر حرارتی به صورت نظری مورد بررسی قرار گرفته است. نتایج نشان داد که فشار بخار مس بر سطح
زیرلایه، نرخ لایه نشانی و ضخامت لایه نازک با افزایش این فاصله کاهش مییابد. در حالیکه مقدار یکنواختی ضخامت لایه نازک با افزایش این فاصله بهبود می یابد. با افزایش فاصله از ۱۳cmتا ۳۳cmنرخ لایه نشانی از 5/57nm/sتا ۱/۱2nm/sکاهش و پهنای تابع ضخامت لایه از 56nmتا ۱20nmافزایش می یابد. همچنین، تابع وابستگی پهنای ضخامت و نرخ لایه نشانی لایه نازک به فاصله چشمه تا سطح زیرلایه ارائه شده است تا فاصله مناسب با توجه به کاربرد لایه نازک انتخاب شود.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical study on the effect of source-to-substrate distance on copper thin film deposited by thermal evaporation technique

نویسندگان [English]

  • javad alipour zardkouhi
  • fatemeh shariatmadar tehrani
  • maryam aliyannezhadi
چکیده [English]

Copper thin films are widely used in security sensors, medical sensors, solar panels, mode locked laser, cancer treatment, and so on. Thermal evaporation is a common technique for deposition of copper thin
films. The distance between the copper source and the substrate is an important parameter that has not been investigated yet. Therefore, the effect of this parameter on the process of copper thin film deposition by thermal evaporation is investigated theoretically in this paper. The results showed that the copper vapor pressure on the substrate surface, the deposition rate and the thickness of the thin layer decreased with increasing this distance, whereas the uniformity of the film thickness improved with increasing the distance. The deposition rate decreased from 5.57nm/s to 1.12 nm/s and the thickness uniformity increases from 56 nm to 120 nm with increasing distance from 13 cm to 33 cm. Also, the dependence of thickness uniformity and deposition rate on the source-to-substrate distance was presented to select the appropriate distance according to the application of the thin layer.

کلیدواژه‌ها [English]

  • Copper thin film
  • Thermal evaporation
  • Simulation
  • Deposition rate
  • Physical vapor deposition

[1] A. Sharma, A. K. Goyal, and G. Rath,
"Recent advances in metal nanoparticles in
cancer therapy," Journal of drug targeting,
26, 617-632, 2018.
[2] R. Chakraborty and T. Basu, "Metallic
copper nanoparticles induce apoptosis in a
human skin melanoma A-375 cell line,"
Nanotechnology, 28, 105101-105111, 2017.
[3] S. Kamble et al., "Evaluation of curcumin
capped copper nanoparticles as possible
inhibitors of human breast cancer cells and
angiogenesis: a comparative study with
native curcumin," AAPS PharmSciTech,
17, 1030-1041, 2016.
[4] A.C. Anselmo and S. Mitragotri, "A review
of clinical translation of inorganic
nanoparticles," The AAPS journal, 17,
1041-1054, 2015.
[5] J.K. Kim et al., "Therapeutic application of
metallic nanoparticles combined with
particle-induced x-ray emission effect,"
Nanotechnology, 21, 425102-425208, 2010.
[6] T. Kruk et al., "Nanocomposite
multifunctional polyelectrolyte thin films
with copper nanoparticles as the
antimicrobial coatings," Colloids and
Surfaces B: Biointerfaces, 181, 112-118,
2019.
[7] X. Huang, A. B. Schubert, J. D. Chrisman,
and N. S. Zacharia, "Formation and tunable
disassembly of polyelectrolyte–Cu2+ layerby-layer complex film," Langmuir, 29,
12959-12968, 2013.
[8] E. Korzeniewska, A. Szczęsny, J. Józwik,
and A. Tofil, "Computer measurement of
the friction of thin metal structure created in
PVD technology on the flexible substrate,"
in MATEC Web of Conferences, 252,
09005:-09015,2019.
[9] M. Aliannezhadi, M. Minbashi, and V.V.
Tuchin, "Effect of laser intensity and
exposure time on photothermal therapy
with nanoparticles heated by a 793-nm
diode laser and tissue optical clearing,"
Quantum Electronics, 48, 559-567, 2018.
[10] H. Ahmadian, F.S. Tehrani, and M.
Aliannezhadi, "Hydrothermal synthesis and
89 بهار ۱۳۹۹ |شماره ۱ | سال هفتم
characterization of WO3 nanostructures:
effects of capping agent and pH," Materials
Research Express, 6, 1050210-1050217,
2019.
[11] S. Soni and R. K. Sinha, "Tumor blood
perfusion-based requirement of
nanoparticle dose-loadings for plasmonic
photothermal therapy," Nanomedicine, 14,
1841-1855, 2019.
[12] M. Aliannezhadi, S. Amini, M. Taghizadeh,
and M. Heidari, "The Effect of Light
Fluence Rate on Photodynamic Therapy,"
(in eng), Laser in Medicine, Research 16,
26-18, 2019.
[13] M. Aliannezhadi, A.H. Mollazadeh, and M.
Minbashi, "The effect of nano particles and
laser intensity on cancer therapy and Tissue
temperature variations after irradiation," (in
eng), Laser in Medicine, 13, 11-20, 2018.
[14] A. Muhammad, M. Ahmad, R. Zakaria, P.
Yupapin, S. Harun, and M. Yasin, "Modelocked thulium doped fibre laser with
copper thin film saturable absorber,"
Journal of Modern Optics,14, 1-5, 2019.
[15] M.J. Kadhim, K.A. Sukkar, and A.S.
Abbas, "Copper Thin Film Deposited By
PVD on Aluminum AA4015 Substrate for
Thermal Solar Application," in IOP
Conference Series: Materials Science and
Engineering, 518, 032048-032055,2019..
[16] C.E. Kennedy, "Review of mid-to hightemperature solar selective absorber
materials," National Renewable Energy
Lab., 13, 114-120, 2002.
[17] X. Xu et al., "Ultrafast epitaxial growth of
metre-sized single-crystal graphene on
industrial Cu foil," Science bulletin, 62,
1074-1080, 2017.
[18] T. Ma, H. Ariga, S. Takakusagi, and K.
Asakura, "Smooth epitaxial copper film on
sapphire surface suitable for high quality
graphene growth," Thin Solid Films, 646,
12-16, 2018.
[19] P.A. Pivovarov et al., "Crystallization of
Thin Copper Films on Silica Substrate for
Graphene Growth," physica status solidi
(b), 16, 1800685-1800691, 2019.
[20] A. Lakhtakia and R.J. Martín-Palma,
Engineered biomimicry. Newnes,18, 112-
120, 2013.
[21] H.D. Espinosa and B. Prorok, "Size effects
on the mechanical behavior of gold thin
films," Journal of Materials Science, 38,
4125-4128, 2003.
[22] C. Claassens, J. Terblans, M. Hoffman, and
H. Swart, "Kinetic Monte Carlo simulation
of monolayer gold film growth on a
graphite substrate," Surface and Interface
Analysis: An International Journal devoted
to the development and application of
techniques for the analysis of surfaces,
interfaces and thin films, 37, 1021-1026,
2005.
[23] E. Chason and A. F. Bower, "Kinetic Monte
Carlo simulations of stress and morphology
evolution in polycrystalline thin films,"
Journal of Applied Physics, 125, 115304-
115314, 2019.
[24] T. van Opstal and B. van der Linden,
"Modeling of Chemical Vapor Deposition
at the Pore-Scale Using Finite Cell
Method," 2019.
[25] M. Ohring, Materials science of thin films.
2001.