تاثیر جایگزیدگی اتم کروم بر ویژگی الکترونیکی و نوری نانوصفحه روی سولفید

نویسندگان

دانشکده فیزیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران

چکیده

در مقاله‌ی پیش رو به بررسی خواص الکترونیکی و اپتیکی نانوصفحه‌ها‌ی خالص روی سولفید ZnSو آلاییده‌ی Cr-ZnS، با استفاده از بسته‌ی محاسباتی کوانتوم اسپرسو و بکارگیری تقریب GGA- PBE در چارچوب نظریه‌ی تابعی چگالی پرداخته‌ایم و در حل محاسبات نیز، از روش شبه‌پتانسیل و بسط تابع موج الکترون‌های ظرفیت برحسب امواج تخت بهره گرفته‌ایم. بررسی‌ها حاکی از آن است که افزودن اتم کروم به عنوان ناخالصی، منجر به کاهش گاف انرژی نانوصفحه به 5/1 الکترون ‌ولت و پیدایش خواص نیمه ‌فلزی می‌شود، همچنین باعث کاهش مقدار تابع دی الکتریک و ضریب خاموشی شده و پیک‌هایی در ناحیه‌ی مرئی برای هر دو نمودار ظاهر می‌شود؛ مقدار تابع اتلاف نیز در ترکیب آلاییده به کروم کاهش می‌یابد و باعث جابجایی پیک‌های پلاسمونی به انرژی‌های کمتر می‌گردد، علاوه بر این با افزودن کروم ضریب شکست در انرژی‌های پایین افزایش می‌یابد، بطوریکه می‌توان آن را جز مواد با ضریب شکست بالا دانست. افزایش ضریب بازتابندگی نیز نشان از فلزی‌تر شدن خواص ترکیب ناخالص دارد. ضریب بازتابندگی اپتیکی بعد از 13 الکترون ولت و ضریب خاموشی بعد از 21 الکترون ولت به طورکلی صفر می‌شوند؛ با در نظر داشتن نتایج بدست آمده می‌توان طراحی و ساخت ابزارهای الکترونیکی و اپتیکی را بهبود بخشید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of doping Chromiumon Electronic and optical properties of ZnS nanosheet

نویسندگان [English]

  • M. Jafari
  • K. Alvani
چکیده [English]

Electronic and optical properties of the pure and Cr-doped ZnS nanosheets have been studied via adopting a plane-wave pseudopotential approach at the DFT-PBE level of theory. It is found that adding Cr atoms as the impurity decreases the band gap down to 1.5 eV and gives rise to half-metallic characteristics. Moreover, values of the dielectric function and the extinction coefficient of the doped monolayer decrease compared to the pure one, leading to some peaks in the visible range. The loss function also takes lower values due to doping and makes the plasmon peaks shift to lower energy range. However, the refractive index has an increasing trend at low energies so that the doped nanosheet could be considered as a high-refractive index material. Increase in the reflective coefficient also indicates the higher metallic feature of the doped monolayer compared to the pure one. Furthermore, the optical reflective and the extinction coefficients vanish for values larger than 13 and 21 eV, respectively. Our results could be of great importance for improving the performance of electronic and optical devices.

کلیدواژه‌ها [English]

  • ZnS nanosheet
  • Cr-doped
  • optical properties
  • density functional theory
[1] J. X. Ding, J. A. Zapien, W. W. Chen, Y.Lifshitz, S. T. Lee, “Lasing in nanowires grown on anodic aluminum oxide templates,” Applied physics letters, 85, 2361-2363, 2004.

[2] H.C. Ong, R.P.H. Chang, “Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry,” Applied physics letters, 79, 3612-3614, 2001.

[3] L. A. Xue, R. Raj, “Deformation-induced phase transformation in zinc sulphide,” Materials science letters, 9, 818-819, 1990.

[4] S.U. Rehmana, M. Hafeez, W. Uddin, S.A. Khan, Q. Lu, L. Wei, M. Saeed, M. Sohail, A.S. Saleemi, S. Kumar, L. Zhu, “Orientation dependent electronic and optical properties of ZnS nanowires and ZnS—Si core shell nanowires,” Applied surface science, 486, 539–545, 2019.
[5] K. Liu, M. Sakurai, M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors, 10, 8604- 8634, 2010.
[6] Y. Hou, Z. Mei, X. Du, “Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1-xO,” Physics D: applied Physics, 47, 283001, 1-25, 2014.

[7] A. Janotti, C.G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on progress in physics, 72, 126501(1-29), 2009.

[8] M. Hong, M.G. Hong, W. W. Jun, G.X. Xi, M H. Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chinese physics B, 17, 1280-12286, 2008.

[9] D.A. Reddy, D.H. Kim, S. J. Rhee, B. W. Lee, C. Liu, “Tunable blue-green emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs,” Nanoscale research letters, 9, 1-8, 2014.

[10] D.Y. Jiang, Z. Zhang, R. X. Liang, Z.H. Zhang, Y. Li, Q. Zhao, X. P. Ouyang, “Electronic structure and optical properties of the scintillation material wurtzite ZnS(Ag),” Nuclear science and techniques, 32, 1-7, 2017.

[11] L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, D. Golberg, “Self‐assembled highly faceted wurtzite‐type ZnS single‐crystalline nanotubes with hexagonal cross‐sections,” Advanced materials, 17, 1972-1977, 2005.

[12] S. Rodríguez, C. Zandalazini, J. Navarro, K. T. Vadiraj, E. A. Albanesi, “First principles calculations and experimental study of the optical properties of Ni-doped ZnS,” Materials research express, 7, 016303, 1-9, 2019.
[13] P.G. Koontz, G.R. Keepin, J. E. Ashley, “ZnS(Ag) phosphor mixtures for neutron scintillation counting,” Review scientific instruments, 26, 352-356 ,1955.

[14] J. Xu, Y. Li, “Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions,” Colloid and interface science, 259, 275-281, 2003.

[15] Ü. Özgür, Ya. I. Alivov, C. Liu, A.Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, “A comprehensive review of ZnO materials and devices¸” Applied physics letters, 98, 041301, 2005.

[16] H. Absike , H. Labrim, B. Hartiti, K. Douhou, H.Ez-Zahraouy, “Ab initio calculations on electronic, optical and thermoelectric properties of (Si, Pb) (co)-doped ZnS for solar cell device applications,” Physics and chemistry of solids, 132, 10-17, 2019.

[17] T. Yamamoto, S. Kishimoto, S. Iida, “Control of valence states for ZnS by triple-codoping method,” Condensed matter, 308–310, 916-919, 200 [18] C.N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Applied physics letters, 74, 1236-1238, 1999.

[19] T. A. Kennedy, E. R. Glaser, P. B. Klein, R. N. Bhargava, “Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals,” Physical review B, 52, 14356-14359, 1995.

[20] Q. Liu, H. Zhao, X. Wang, J. Huo, L. Li, P. Gao, P. Qian, Y. Su, N. Chen, “Theoretical investigation of Agn@(ZnS)42(n=6-16) using first principles: Structural, electronic and optical properties,” Progress in natural science: materials international, 1002-0071, 1-8, 2019.

[21] J.S. Mccloy, M. Bliss, B. miller, Z. Wang, S.Stave, “Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS,” Luminescence, 157, 416-423, 2015.

[22] M. Ardid, J. L. Ferrero, A. Herrero, “Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector,” Nuclear instruments and methods in physics research section A, 557, 510- 515, 2006.

[23] Y. Morishita, S. Yamamoto, K. Izaki, J. H. Kaneko, K. Toui, Y. Tsubota, M. Higuchi, “Performance comparison of scintillators for alpha particle detectors,” Nuclear instruments and methods in physics research section A, 764, 383- 386, 2014.

[24] H. Philipsborn, “Large-area low-level gross alpha ZnS scintillation counting,” Applied radiation and isotopes, 67, 797-799, 2009.

[25] L. Pujol, J. A. Suarez-Navarro, M. Montero, “A method for the selection of the optimum counting conditions in a ZnS(Ag) scintillation detector,” Applied radiation and isotopes, 52, 891- 897, 2000.

[26] C. Tablero, “Electronic and magnetic properties of ZnS doped with Cr,” Physical review B, 74, 195203, 2006.

[27] Y. Huang, Z. Zhang, F. Ma, P. K. chu, C. Dong, X. Wei, “First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes,” Computational materials science, 101, 1-7, 2015.

[28] H. Nejatipour, M. Dadsetani, “Electronic structures of ZnX (X = O and S) nanosheets from first-principles energy loss near edge structure studies,” Electron spectroscopy and related phenomena, 203, 14-24, 2015.

[29] Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, “Preparation of Cr-doped ZnS nanosheets with room temperature ferromagnetism via a solvothermal route,” Crystal growth, 372, 39-
42, 2013.

[30] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M.Wentzcovitch, “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Condensed matter, 21, 395502, 2009.

[31] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Computer physics communications, 59, 399–415, 1990.

[32] K. Schwarz, P. Blaha, “Solid state calculations using WIEN2k,” Computational material science, 28, 259-273, 2003.

[33] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simpl,” Physical review letters, 77, 3865-3868, 1996.

[34] J.P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Physical review letters, 100, 136406, 2008.

[35] Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, S. De , “Mechanical properties and stabilities of g-ZnS monolayers,” Rsc advances, 48, 11240- 11247, 2015.

[36] X. Zhang, M. Zhao, S. Yan, T. He, W. Li, X. Lin, Z. Xi, Z. Wang, X. Liu, Y. Xia, “Firstprinciples study of ZnS nanostructures: nanotubes, nanowires and nanosheets,” Nanotechnology, 19, 305708, 2008.

[37] A. K. Kole, P. Kumbhakar, “Cubic-tohexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals,” Results in physics, 2, 150-155, 2012.

[38] S. B. Zhang, J. E. Northrup, “Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion,” Physical review letters, 67, 17-21, 1991.

[39] A. Boochani, A. Akhtar, M. Amiri, C. Luna, D. Prakash Rai, S. Bashiri, M. Molamohammadi, S. M. Elahi, “Effects of hydrogen and nitrogen impurities on electronic, structural and optical properties of 2D ZnS graphene based,” Materials science, 52, 10393-10405, 2017.

[40] M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, S. Jalali-Asadabadi, “Metal mono-chalcogenides ZnX and CdX (X= S, Se and Te) monolayers: Chemical bond and optical interband transitions by first principles calculations,” Physics letters A, 381, 663-670, 2017.

[41] H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, R. TaghaviMendi, “Electronic and optical properties of 2D graphenelike ZnS: DFT calculations,” Applied surface Science, 369, 76-81, 2016.

[42] D. P. Rai, S. Kaur, S. Srivastava, “Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study,” Physics B: Condensed matter, 531, 90-94, 2018.

[43] S. Ghosal, H. Luitel, S. K. Mandal, D. Sanyal, D. Jana,”Half metallic ferromagnetic and optical properties of ruthenium-doped zincblende ZnS: A first principles study,” Physics and chemistry of solids, 136, 109175, 1-8, 2019.

[44] H. S. Kwok, X. W. Sun, D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films, 335, 299-302, 1998.

[45] A. Akhtar, A. Boochani, S. M. Elahi, M. Amiri, M. Molamohammadi, “Reflectivity and refractivity index enhancement in H doped ZnS graphene sheet: A first-principles study,” Optik, 144, 446-458, 2017.