مروری جامع بر فعالیت زیست سازگاری (M=Mn, Ca, Zn) MFe2O4به عنوان نانوحامل دارو سرطان سینه سنتز شده به روش عملیات گرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات نانوبیوتکنولوژی، دانشگاه علوم پزشکی بقیه الله (عج)، تهران، ایران

2 گروه فیزیک، دانشکده علوم پایه، ، دانشگاه ملی ملایر، ملایر، ایران

3 دانشگاه ملایر،دانشکده علوم پایه،گروه فیزیک

چکیده

در این پژوهش، نانوذرات فریت منگنز (Mn)، فریت کلسیم (Ca) و فریت روی (Zn) با روش عملیات گرمایی سنتز شدند. مقدار  بارگذاری و رهایش کورکومین (CUR) از نانوحامل­هایMn ،Ca  و  Znدر pH­های متفاوت بررسی شد. درصد بارگذاری دارو در نانوحامل‌های Mn نسبت به Ca و Zn بیشتر بوده که نتیجه خنثی بودن فریت منگنز در محیط بارگذاری است. برهمکنش قوی π-π بین CUR و نانوحامل‌های فریت منگنز باعث افزایش درصد بارگذاری دارو می­شود. با تغییر pH از 4/7 به 5/5، رهایش کورکومین از نانوحامل­هایMn ،Ca  و  Znبه ترتیب از 41، 7/24 و44 درصد به 92، 7/58 و 53 درصد افزایش یافت. زیست سازگاری نانوحامل‌هایMn ،Ca  و  Znبا استفاده از روش MTT، آزمایش همولیز و آزمون دوز کشنده تعیین شد. بررسی‌ها نشان داد که علی‌رغم اینکه در حضور نانوحامل‌های Zn، درصد بالایی از سلول­های سرطانی MCF-7 تخریب می‌شوند اما این نانو حامل­ها بر سلول‌های نرمال HEK-293 تأثیر مخربی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

A comprehensive overview on biocompatibility activity of MFe2O4 (M = Mn, Ca, Zn) as a nanocarrier of breast cancer drug synthesized by heat treatment method

نویسندگان [English]

  • Ramezan Ali Taheri 1
  • EHSAN Naderi 2
  • Mahsa Safari 2
1 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
2 Department of Physics, Faculty of Basic Sciences, Malayer National University, Malayer, Iran
3
[1] J. Ding, T. Liang, Y. Zhou, Z. He, Q. Min, L. Jiang, J. Zhu, "Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy", Nano Research, 10, 690-703, 2017.
[2] J.W. Park, "Liposome-based drug delivery in breast cancer treatment", Breast Cancer Research, 4, 95, 2002.
[3] F. Danhier, O. Feron, V. Préat, "To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery", Journal of controlled release, 148, 135-146, 2010.
[4] A.R. Chowdhuri, D. Laha, S. Chandra, P. Karmakar, S.K. Sahu, "Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells", Chemical Engineering Journal, 319, 200-211, 2017.
[5] M. Zamani, K. Rostamizadeh, H.K. Manjili, H. Danafar, "In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery", European Polymer Journal, 103, 260-270, 2018.
[6] A.C. Anselmo, S. Mitragotri, "Impact of particle elasticity on particle-based drug delivery systems", Advanced drug delivery reviews, 108, 51-67, 2018.
[7] V.P. Torchilin, "Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery", Nature reviews Drug discovery, 13, 813, 2014.
[8] M. Colilla, A. Baeza, M. Vallet‐Regí, "Mesoporous silica nanoparticles for drug delivery and controlled release applications", The Sol‐Gel Handbook, 1309-1344, 2015.
[9] K. Cheung, D .B Das, "Microneedles for drug delivery: trends and progress", Drug delivery, 23(7), 2338-54, 2016.
[10] E. Blanco, H. Shen, M. Ferrari, " Principles of nanoparticle design for overcoming biological barriers to drug delivery", Nature biotechnology, 33(9), 941, 2015.
[11] A. Srivastava, T. Yadav, S. Sharma, A. Nayak, AA. Kumari, N. Mishra, "Polymers in drug delivery", Biosciences and Medicines, 25, 69-84, 2015.  
[12] D. Iannazzo, A. Pistone, M. Salamò, S. Galvagno, R. Romeo, SV. Giofré, C. Branca, G. Visalli, A. Di Pietro, "Graphene quantum dots for cancer targeted drug delivery", International journal of pharmaceutics, 25,185-92, 2017.
 [13] R .Heidari, J. Rashidiani, M. Abkar, R. A. Taheri, et al, "CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker", Biosensors and Bioelectronics, 126, 7-14, 2019.
[14] H. Hajipour, H. Hamishehkar, N. Soltan, et al, " Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers", Artificial cells, nanomedicine, and biotechnology, 46, 283-92, 2018.
[15] A. R. Nikpoor, M. R. Jaafari, P. Zamani, et al, Cell cytotoxicity, immunostimulatory and antitumor effects of lipid content of liposomal delivery platforms in cancer immunotherapies. A comprehensive in-vivo and in-vitro study", International journal of pharmaceutics, 567, 118492, 2019.
[16] H. Hajipour, H. Hamishehkar, S. Nazari Soltan Ahmad, S. Barghi, NF. Maroufi, RA. Taheri. "Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers". Artificial cells, nanomedicine, and biotechnology. 46(sup1):283-92,2018.
[17] A. Marcu, S. Pop, F. Dumitrache, M. Mocanu, CM. Niculite, M. Gherghiceanu, CP. Lungu, C. Fleaca, R. Ianchis, A. Barbu, C. Grigoriu. "Magnetic iron oxide nanoparticles as drug delivery system in breast cancer". Applied Surface Science. 281:60-5, 2013.
[18] M. G. Naseri, M. K. Halimah, A. Dehzangi, et al, "comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method", Physics and Chemistry of Solids. 75, 315-27, 2014.
[19] M.G. Naseri, E.B. Saion, " Crystalization in spinel ferrite nanoparticles. Advances in Crystallization", Processes, 27, 349-80, 2012
[20] M. Aghajanzadeh, E. Naderi, M. Zamani, A. Sharafi, M. Naseri, H. Danafar, "In vivo and in vitro biocompatibility study of MnFe2O4 and Cr2Fe6O12 as photosensitizer for photodynamic therapy and drug delivery of anti-cancer drugs", Drug development and industrial pharmacy, 46(5), 846-51, 2020.
[21] M.G. Naseri, E. B. Saion, H. A. Ahangar, M. Hashim, A. H. Shaari, " Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method", Magnetism and magnetic Materials, 323(13), 1745-9, 2011.
[22] E. Naderi, M. Aghajanzadeh, M. Zamani, A. Sharafi, M. Naseri, H. Danafar. "The Effect of Calcination Temperature on the Anticancer Activity of CaFe2O4@PVA Nanocarriers: Photodynamic Therapy and Drug Delivery Study", Journal of Inorganic and Organometallic Polymers and Materials, 30(12):5261-9, 2020.
[23] M. Naseri, E. Naderi, A. R. Sadrolhosseini, " Effect of phase transformation on physical and biological properties of PVA/CaFe2O4 nanocomposite", Fibers and Polymers, 17(10), 1667-74, 2016.
[24] M. Zamani, E. Naderi, M. Aghajanzadeh, M. Naseri, A. Sharafi, H. Danafar, "Co1− XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study", Molecular Liquids, 15, 60-7, 2019.
[25] M.G. Naseri, E. B. Saion, M. Hashim, A.H. Shaari, " Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method", Solid State Communications, 151, 14-15, 2011,
 [26] E. Naderi, M. Naseri, H. Taimouri Rad, R. Zolfaghari Emameh, G. Farnoosh, RA. Taheri, "In vivo and In vitro Biocompatibility Study of Fe3O4@ZnO and Fe3O4@SiO2 as Photosensitizer for Targeted Breast Cancer Drug Delivery", Journal of Sciences, Islamic Republic of Iran, 1, 357-68, 2020.
[27] E. Naderi, M. Aghajanzadeh, M. Zamani, A. Hashiri, A. Sharafi, A. Kamalianfar, M. Naseri, H. Danafar, "Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study", Drug Delivery Science and Technology, 57, 101645, 2020.
[28] S.J. Hewlings, D. S .Kalman, " Curcumin: a review of its effects on human health", Foods, 6(10), 92, 2017.
[29] A. Shehzad, J. Lee, Y. S. Lee, " Curcumin in various cancers. Biofactors", 39(1), 56-68, 2013.
[30] B. B. Aggarwal, A. Kumar, A. C. Bharti, " Anticancer potential of curcumin: preclinical and clinical studies", Anticancer research, 23, 363-98, 2003.
[31] S. Bimont, A. Barbieri, M. Leongito, et al, " Curcumin anticancer studies in pancreatic cancer", Nutrients, 8, 433, 2016.
[32] M. S. Zaman, N. Chauhan, M. M. Yallapu, et al, " Curcumin nanoformulation for cervical cancer treatment", Scientific reports, 3, 1-4, 2016.
[33] P. Amini, H. Saffar, M. R. Nourani, et al, "Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats", International journal of molecular and cellular medicine, 7, 212, 2018.
[34] Wang G, Zhao D, Ma Y, Zhang Z, Che H, Mu J, Zhang X, Zhang Z. Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery. Applied Surface Science. 15; 428:258-63, 2018..
[35] Okoroh DO, Ozuomba J, Aisida SO, Asogwa PU. Thermal treated synthesis and characterization of polyethylene glycol (PEG) mediated zinc ferrite nanoparticles. Surfaces and interfaces. 1;16:127-31, 2019.
[36] Chen P, Cui B, Bu Y, Yang Z, Wang Y. Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M= Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery. Journal of Nanoparticle Research. 19(12):1-1, 2017.
[37] Liu C, Zou B, Rondinone AJ, Zhang ZJ. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. The Journal of Physical Chemistry B 17;104(6):1141-5, 2000.
[38] Sulaiman NH, Ghazali MJ, Yunas J, Rajabi A, Majlis BY, Razali M. Synthesis and characterization of CaFe2O4 nanoparticles via co-precipitation and auto-combustion methods. Ceramics International. 1;44(1):46-50, 2018.
[39] Latorre-Esteves M, Cortes A, Torres-Lugo M, Rinaldi C. Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. Journal of Magnetism and Magnetic Materials. 2009 Oct 1;321(19):3061-6.
[40] م. ناصری، ا. نادری، "مروری بر نانوذرات فریت‌های سنتز شده به روش عملیات گرمایی"، نشریه نانو مقیاس، سال سوم، شماره اول، بهار1395.
[41] Y. Xiao, H. Liang, Z. Wang, "MnFe2O4 /chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium", Journal of Mater Res Bull, 48, 3910–3915, 2013.
[42] W. Shi, Q. Li, S. An, T. Zhang and L. Zhang, "Magnetic nanosized calcium ferrite particles
for efficient degradation of crystal violet using
amicrowave-induced catalytic method: insight
into the degradation pathway ", Journal of Chem Technol Biotechnol, 2, 367-374, 2016.
[43] R.A. Bohara, N.D. Thorat, H.M. Yadav, S.H. Pawar, "One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications", New Journal of Chemistry, 38, 2979-2986, 2014.
 [44] J. Li, D.H. Ng, P. Song, Y. Song, C. Kong, "Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye", Journal of Industrial and Engineering Chemistry, 23, 290-298, 2015.
 [45] O.O. Guideline, 425: acute oral toxicity—up-and-down procedure, OECD Guidelines for the Testing of Chemicals, 2, 12-16, 2001.