مطالعه اثر توزیع اندازه بر ویژگی‌های نورتابی نانوذرات اکسیدآهن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده فیزیک، دانشگاه خوارزمی، تهران

چکیده

در این پژوهش، نانوذرات اکسید‌آهن با استفاده از روش هم‌رسوبی سنتز شدند. به دنبال آن توسط حل کردن نانوذرات در تولوئن و کاهش حلالیت آن‌ها با استفاده از استون به‌عنوان پاد حلال، اندازه‌های متفاوتی از نانوذرات اکسید‌آهن انتخاب و جدا شدند. پس از جداسازی نانوذرات با اندازه‌های متفاوت، ساختار نواری آن‌ها توسط طیف‌شناسی نورتابی (فتولومینسانس) بررسی شدند. برای تعیین فاز و ساختار نانوذرات اکسید‌آهن از پراش پرتوی ایکس و برای بررسی اندازه نانوذرات از آنالیز پراش نور پویا و تصویربرداری میکروسکوپ الکترون عبوری استفاده شد. نتیجه‌های به‌دست آمده قابلیت جداسازی نانوذرات اکسید آهن را تا 3 نانومتر تأیید می‌کنند و همچنین نتیجه‌های طیف‌سنجی فتولومینسانس انتقال بیشینه گسیل را به سمت طول‌موج‌های بلندتر، توسط کاهش اندازه نانوذرات اکسید آهن را نشان می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the size distribution effect on the Photoluminescence properties of Iron oxide nanoparticles

نویسندگان [English]

  • mostafa shaabanloo
  • s,mohammad hossein khalkhali
  • ali ghiasvand
چکیده [English]

In this research, iron oxide nanoparticles were synthesized by co-precipitation method. Then by solving the nanoparticles in toluene and reducing the solubility of them by acetone as anti-solvent, different sizes of nanoparticles were selected and separated. After selection and separation, the band structure of the nanoparticles was studied by photoluminescence spectroscopy (PL). X-ray diffraction was used for phase and structure determination of nanoparticles and dynamic light scattering (DLS) and transition electron microscopy (TEM) were used for size determination. The results confirmed the possibility of selection and separation of iron oxide nanoparticles of three nanometers (3nm) and also photoluminescence spectroscopy results showed a red-shift by reducing the size of the iron oxide nanoparticles.

[1] W. Tan, X. Ruan, Q. Yu, Z. Yu, X. Huang, “Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting,” Sensors, 15, 352-364, 2014.
[2] S. Liang, J. Li, F. Wang, J. Qin, X. Lai, X. Jiang, “Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, 238, 923-927, 2017.
[3] R. Abdelghani, H. Shokry Hassan, I. Morsi, A.B. Kashyout, “Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique,” Sensors and Actuators B: Chemical, 297, 126668, 2019.
[4] X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu, “Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping,” Sensors and Actuators B: Chemical, 256, 861-869, 2018.
[ 5 [ ح. سالار آملی، م. محرم زاده، "ساخت حس گر رطوبت بر
پایه نانوذرات اکسیدقلع و گرافیت به روش اسپری پیرولیز،"
نانومقیاس، 4 ، 320 - 311 ، 1396 .
[6] H. Wang, Y. Qu, Y. Li, H. Chen, Z. Lin, “Effect of Ce+3 and Pd+2 Doping on Coral-Like Nanostructured SnO2 as Acetone Gas Sensor,” Journal of Nanoscience and Nanotechnology, 13, 1858-1862, 2013.
[7] L.K. Bagal, J.Y. Patil, K.N. Bagal, I.S. Mulla, S.S. Suryavanshi, “Acetone vapour sensing characteristics of undoped and Zn, Ce doped SnO2 thick film gas sensor,” Materials Research Innovations, 17, 98-105, 2013.
[8] F. Rabiei, M.E. Ghazi, M. Eizadi Fard, “Investigation of sensing properties of cobalt doped nickel-ferrite nanostructures synthesized by microwave method,” Iranian Journal of Crystallography and Mineralogy, 23 (2016) 689-698
[9] Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, “Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity,” Sensors and Actuators B: Chemical, 238, 264-273, 2017.
[ 10 [ ن. جمال پور، م. قاسمی، و. سلیمانیان، "مقایسه خواص
اپتوالکترونیکی لایه های نانوساختار In2O3 ، SnO2 و ITO جهت
حس گری اتانول،" نانومقیاس، 4 ، 330 - 321 ، 1396 .
[11] P. Salimi kuchi, H. Roshan, M.H. Sheikhi, “A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties,” Journal of Alloys and Compounds, 816, 152666, 2020.
[12] M. Asgari, F.H. Saboor, Y. Mortazavi, A.A. Khodadadi, “SnO2 decorated SiO2 chemical sensors: Enhanced sensing performance toward ethanol and acetone,” Materials Science in Semiconductor Processing, 68, 87-96, 2017.
40 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[13] M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil, J.-H. Yun, “New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors,” Scientific Reports, 8, 8089, 2018.
[14] N. Lavanya, C. Sekar, S. Ficarra, E. Tellone, A. Bonavita, S.G. Leonardi, G. Neri, “A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode,” Materials Science and Engineering: C, 62, 53-60, 2016.
[15] W. Ben Haj Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, “Effect of high Fe doping on Raman modes and optical properties of hydrothermally prepared SnO2 nanoparticles,” Materials Science in Semiconductor Processing, 77, 31-39, 2018.
[16] S. Ferrari, L.G. Pampillo, F.D. Saccone, “Magnetic properties and environment sites in Fe doped SnO 2 nanoparticles,” Materials Chemistry and Physics, 177, 206-212, 2016.
[17] W. Ben Haj Othmen, N. Sdiri, H. Elhouichet, M. Férid, “Study of charge transport in Fe-doped SnO2 nanoparticles prepared by hydrothermal method,” Materials Science in Semiconductor Processing, 52, 46-54, 2016.
[18] F.H. Aragón, J.A.H. Coaquira, I. Gonzalez, L.C.C.M. Nagamine, W.A.A. Macedo, P.C. Morais, “Fe doping effect on the structural, magnetic and surface properties of SnO2 nanoparticles prepared by a polymer precursor method,” Journal of Physics D: Applied Physics, 49, 55002, 2016.
[19] S. Sambasivam, B.C. Choi, J.G. Lin, “Intrinsic magnetism in Fe doped SnO2 nanoparticles,” Journal of Solid State Chemistry, 184, 199-203, 2011.
[20] A. Arabkhorasani, E. Saievar-Iranizad, A. Bayat, “Investigation of Thickness Effect of Films on Performance of Dye Sensitized Solar Cell Based on ZnO and SnO2 Nanoparticles,” Nanomeghyas, 2, 133-169, 2015.
[21] T. Amutha, M. Rameshbabu, S. Sasi Florence, N. Senthilkumar, I. Vetha Potheher, K. Prabha, “Studies on structural and optical properties of pure and transition metals (Ni, Fe and co-doped Ni–Fe) doped tin oxide (SnO2) nanoparticles for anti-microbial activity,” Research on Chemical Intermediates, 45, 1929-1941, 2019.
[22] M. Sharma, S. Kumar, R.N. Aljawfi, S. Dalela, S.N. Dolia, A. Alshoaibi, P.A. Alvi, “Role of Fe-Doping on Structural, Optical and Magnetic Properties of SnO2 Nanoparticles,” Journal of Electronic Materials, 48, 8181-8192, 2019.
[23] M.A. Tagliente, M. Massaro, “Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 1055-1061, 2008.
[24] S. Nilavazhagan, S. Muthukumaran, “Investigation of optical and structural properties of Fe, Cu co-doped SnO2 nanoparticles,” Superlattices and Microstructures, 83, 507-520, 2015.
[25] T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, “Microwave-assisted synthesis and investigation of SnO2 nanoparticles,” Materials Letters, 63, 896-898, 2009.
41 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[26] J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Raman spectra, “photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles,” Ceramics International, 38, 5563-5570, 2012.
[27] A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y .
Rajpure, “Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide,” Journal of Alloys and Compounds, 505, 743-749, 2010.
[28] M. Jafari, H. Eshghi, “An Investigation on the Physical Properties and Photoconductivity Effect of CuO Nanostructures Prepared by Thermal Oxidation Route,” Nanomeghyas, 6, 11-18, 2019.
[28] E. Ghaleghafi, M. Rahmani, “Fabrication, characterization and investigation of gas sensing properties of MoO3 thin films,” Iranian Journal of Crystallography and Mineralogy, 27, 475-486, 2019.
[29] S. Habibzadeh, A.A. Khodadadi, Y. Mortazavi, “CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion,” Sensors and Actuators B: Chemical, 144, 131-138, 2010.
[30] W. Zhang, B. Yang, J. Liu, X. Chen, X. Wang, C. Yang, “Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements,” Sensors and Actuators B: Chemical, 243, 829-989, 2017.
[31] W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, Y.Z. Mao, “One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers,” Sensors and Actuators B: Chemical, 213, 171-180, 2015.
[32] Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, “Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials,” Ceramics International, 44, 4392-4399, 2018.