ترابرد الکترونی در نانونوارهای تک لایه مکسین Zr2CO2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

3 دانشکده فیزیک، دانشگاه علم و صنعت، تهران، ایران

چکیده

در این مقاله، به مطالعه خواص ترابرد الکترونی در نانونوارهای مکسین Zr2CO2 از نوع دسته صندلی (AMNR) می‌پردازیم. با استفاده از روش تنگ‌بست، ساختار نواری این ماده را بدست آورده و با رهیافت تابع گرین غیرتعادلی، رسانش الکترونی را بررسی می‌کنیم. مشاهده می‌شود که افزایش دادن عرض نوار از 5-AMNR به 20-AMNR باعث کاهش گاف انرژی از 1.77 الکترون‌ولت به 1.40 الکترون‌ولت و همچنین افزایش بیشینه رسانش از ( 7e^2)⁄h به ( 18e^2)⁄h می‌گردد. افزایش عرض نوار تا 55-AMNR نیز نهایتا منجر به کاهش گاف انرژی تا مقدار حدی 1.39 الکترون‌ولت خواهد شد. همچنین برای یک نانونوار با عرض معین 5-AMNR، تهی‌جایگاه‌های کربن و زیرکونیوم را در سه موقعیت مرکزی، لبه‌ای و خطی در نظر گرفته و نشان می‌دهیم که تهی‌جایگاه می‌تواند گاف انرژی را تا مقدار 1.62 الکترون‌ولت کاهش داده و حالت پله‌ای رسانش را از بین ببرد. همچنین در حضور تهی‌جایگاه، شاهد کاهش بیشینه رسانش هستیم و در مواردی این کاهش از ( 7e^2)⁄h (در حالت بدون تهی‌جایگاه) به مقدار کمتر از ( 3e^2)⁄h می‌‌رسد. نتایج این مقاله بیانگر قابلیت تنظیم گاف نواری با تغییر عرض نوار و همچنین کنترل رسانش با اعمال تهی‌جایگاه می‌باشد. چنین ویژگی‌ای نشان دهنده کاربرد‌های بالقوه این نوع مکسین در ادوات نانوالکترونیک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electronic transport in monolayer nanoribbons of Zr2CO2 MXenes

نویسندگان [English]

  • Akbar Niazi 1
  • Hossein Nikoofard 2
  • Ebrahim Heidari Semiromi 2
  • Mahdi Esmailzadeh 3
1 Department of Physics, Iran University of Science and Technology, Tehran , Iran
2 Department of Physics, University of Kashan, Kashan, Iran
3 Department of Physics, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this paper, we study the properties of electronic transport in MXene Zr2CO2 nanoribbons of armchair type (AMNR). By using the tight-binding method, we obtain the band structure of this material and investigate the electron conductance with the non-equilibrium Green's function approach. It can be seen that increasing the width of the ribbon from 5-AMNR to 20-AMNR reduces the energy gap from 1.77 eV to 1.40 eV and also increases the maximum conductance from 7 e^2⁄(h )to 18 e^2⁄(h ). Increasing the width of the ribbon to 55-AMNR will eventually lead to the reduction of the energy gap to a limit value of 1.39 eV. For a nanoribbon with a certain width of 5-AMNR, we consider carbon and zirconium vacancies in three central, edge, and linear positions and show that the vacancy can reduce the energy gap up to 1.62 eV and eliminate the step mode of conductivity. Also, in the presence of vacancy, we see a decrease in the maximum conductance, and in some cases, this decrease reaches from 7 e^2⁄(h ) (in the case without vacancy) to less than 3 e^2⁄(h ). The results of this paper indicate the ability to adjust the band gap by changing the width of the ribbon and also control the conductance by applying the vacancy. These properties show the potential applications of this kind of MXene in nanoelectronic devices.

کلیدواژه‌ها [English]

  • MXenes
  • electronic transport
  • tight-binding method
  • vacancy
  • conductance
 [1] Naguib M. Mochalin VN. Barsoum MW. Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials. 2014; 26(7): 992-1005. https://doi.org/10.1002/adma.201304138.
[2] Zheng Z. Guo C. Wang E. He Z. Tongxiang YL. Xinmei HT. The oxidation and thermal stability of two-dimensional transition metal carbides and/or carbonitrides (MXenes) and the improvement based on their surface state. Inorganic Chemistry Frontiers. 2021; 8(9): 2164-2182. https://doi.org/10.1039/D1QI00041A.
[3] Biag MM. Gul IH. Biag SM. Shahzad F. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. Journal of Electroanalytical Chemistry. 2022; 904: 115920. https://doi.org/10.1016/j.jelechem.2021.115920.
[4] Anasori B. Lukatskaya MR. Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Review Materials. 2017; 2(2): 16098. https://doi.org/10.1038/natrevmats.2016.98.
[5] Perera AAPR. Madhushani KAU. Punchihewa BT. Kumar A. Gupta RK. MXene-based nanomaterials for multifunctional applications. Materials. 2023; 16(3): 1138. https://doi.org/10.3390/ma16031138.
[6] Hong L. Klie RF. Öğüt S. First-principles study of size- and edge-dependent properties of MXene nanoribbons. Physical Review B. 2016; 93(11): 115412. https://doi.org/10.1103/PhysRevB.93.115412.
[7] Naqvi SR. Shukla V. Jena NK. Luo W. Ahuja R. Exploring two-dimensional M2NS2 (M=Ti, V) MXenes based gas sensors for air pollutants. Applied Materials Today. 2020; 19: 100574. https://doi.org/10.1016/j.apmt.2020.100574.
[9] Zhang Q. Teng J. Zou G. Peng Q. Du Q. Jiao T. Xiang J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/Magnetic iron oxide nanocomposites. Nanoscale. 2016; 8(13): 7085−7093. https://doi.org/10.1039/C5NR09303A.
[10] Zhang YZ. Lee KH. Anjum DH. Sougrat R. Jiang Q. Kim H. Alshareef HN. MXenes stretch hydrogel sensor performance to new limits. Science Advances. 2018; 4(6): eaat0098. https://doi.org/10.1126/sciadv.aat0098.
[11] Shahzad F. Alhabeb M. Hatter CB. Anasori B. Hong SM. Koo CM. Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016; 353(6304): 1137−1140. https://doi.org/10.1126/science.aag242.
[12] Grabowski K. Srivatsa Sh. Vashisth A. Mishnaevsky JrL. Uhl T. Recent advances in MXene-based sensors for Structural Health Monitoring applications: A review. Measurement. 2022; 189: 110575. https://doi.org/10.1016/j.measurement.2021.110575.
[13] Kim H. Alshareef HN. MXetronics: MXene-enabled electronic and photonic devices. ACS Materials Letters. 2020; 2(1): 55-70. https://doi.org/10.1021/acsmaterialslett.9b00419.
[14] Mostafaei A. Faizabadi E. Semiromi EH. Tuning the electronic and optical properties of Sc2CF2 MXene monolayer using biaxial strain. Journal of Electronic Materials. 2020; 49: 4892–4902. https://doi.org/10.1007/s11664-020-08162-2.
[15] Han M. Maleski K. Shuck CE. Yang Y. Glazar JT. Foucher AC. Hantanasirisakul K. Sarycheva A.   Frey NC. May SJ. Shenoy VB. Stach EA. Gogotsi Y. Tailoring electronic and optical properties of MXenes through forming solid solutions. Journal of the American Chemical Society. 2020; 142(45): 19110-19118. https://doi.org/10.1021/jacs.0c07395.
[16] Zhao S. Kang W. Xue J. MXene nanoribbons. Journal of Materials Chemistry C. 2015; 3(4): 879-888. https://doi.org/10.1039/C4TC01721H.
[17] Zhang Y. Xia W. Wu Y. Zhang P. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale. 2019; 11(9): 3993-4000. https://doi.org/10.1039/C9NR01160A.
[18] Cui J. Peng Q. Zhou J. Sun Z. Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology. 2019; 30(34): 345205. https://doi.org/10.1088/1361-6528/ab1f22.
[19] Zhou Y. Luo K. Zha X. Liu Z. Bai X. Huang Q. Guo Z. Lin CT. Du S. Electronic and Transport Properties of Ti2CO2 MXene Nanoribbons. The Journal of Physical Chemistry C. 2016; 120(30): 17143–17152. https://doi.org/10.1021/acs.jpcc.6b06426.
[20] Khazaei M. Ranjbar A. Ghorbani-Asl M. Arai M. Sasaki T. Liang Y. Yunoki S. Nearly free electron states in MXenes. Physical Review B. 2016; 93(20): 205125. https://doi.org/10.1103/PhysRevB.93.205125.
[21] Kumar H. Frey NC. Dong L. Anasori B. Gogotsi Y. Shenoy VB. Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano. 2017; 11(8): 7648−7655. https://doi.org/10.1021/acsnano.7b02578.
[22] Mostafaei A. Semiromi EH. A tight-binding model for the electronic structure of MXene monolayers. Nanoscale. 2022; 14(32): 11760-11769. https://doi.org/10.1039/D2NR00745B.
[23] Imry Y. Landauer R. Conductance viewed as transmission. Reviews of Modern Physics. 1999; 71(2): S306. https://doi.org/10.1103/RevModPhys.71.S306.
[24] Li TC. Lu ShP. Quantum conductance of graphene nanoribbons with edge defects. Physical Review B. 2008; 77(8): 085408. https://doi.org/10.1103/PhysRevB.77.085408.
[25] Salami N. Shokri AA. Electronic properties of MoS2 nanoribbons with disorder effects. Journal of Physics and Chemistry of Solids. 2016; 90: 16-26. https://doi.org/10.1016/j.jpcs.2015.11.004.
[26] Xu YY. Yan L. Yang YQ. Yan JY. Transport properties of phosphorene nanoribbons with defects. Physics Letters A. 2023; 483: 129067. https://doi.org/10.1016/j.physleta.2023.129067.
[27] Gorjizadeh N. Farajian AA. Kawazoe Y. The effects of defects on the conductance of graphene nanoribbons. Nanotechnology. 2009; 20(1): 015201. https://doi.org/10.1088/0957-4484/20/1/015201.
[28] Bandyopadhyay A. Ghosh D. Pati SK. Effects of Point Defects on the Magnetoelectronic Structures of MXenes from First Principles. Physical Chemistry Chemical Physics. 2018; 20(6): 4012-4019. https://doi.org/10.1039/C7CP07165E.