حسگری دوپامین با استفاده از مد تم پلاسمون در بلور فوتونی یک بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

آزمایشگاه مگنتوپلاسمونیک، پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران

چکیده

وجود غلظت‌های مختلفی از دوپامین را می‌توان دلیلی بر سلامتی یا عدم سلامتی در برخی از عضو‌های بدن دانست. در این پژوهش به ساخت حسگر بر پایه‌ی پدیده تم پلاسمون در بلور فوتونی یک بعدی پرداخته شده است. به این منظور، بلور فوتونی یک بعدی با روش تفنگ الکترونی ساخته شد و نمونه در معرض غلظت های مختلف دوپامین با کمک کانال میکروفلوئید قرار گرفت. نتایج اندازه گیری جابجایی مد تم در نمونه با قطبش های مختلف و غلظت های دوپامین، نشان دهنده حساسیت ۹۶/۱۶ نانومتر بر غلظت است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dopamine sensing by the aid of Tamm plasmon in one dimensional photonic crystal

نویسندگان [English]

  • Tannaz Amoyan
  • Amirreza Sadrolhosseini
  • Seyede mehri Hamidi
Shahid beheshti University
چکیده [English]

The presence of different concentrations of dopamine can be a reason for the health or unhealthiness of some parts of the body. In this research, a sensor is made based on the plasmon theme phenomenon in one-dimensional photonic crystal. For this purpose, one-dimensional photonic crystal was fabricated by electron gun method and the sample was exposed to different concentrations of dopamine with the help of microfluidic channel. The results of measuring the theme mode displacement in the sample with different polarizations and dopamine concentrations show a sensitivity of 16.96 nm per concentration.

کلیدواژه‌ها [English]

  • Plasmonic sensors
  • Dopamine
  • Photonic crystal
  • Tamm Plasmon
  1. Xiao, CX. Guo, CM. Li, YB. Li, J. Zhang, RH. Xue, S. Zhang, “Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film.” Anal Biochem, 2007, 371, 229–237.
  2. Tye, JJ. Mirzabekov, MR. Warden, EA. Ferenczi, HC. Tsai, J. Finkelstein, SY. Kim, A. Adhikari, KR. Thompson, AS. Andalman, LA. Gunaydin, IB. Witten, K. Deisseroth, “Dopamine neurons modulate neural encoding and expression of depression related behaviour,”. Nature, 2013,493, 537–541.
  3. Segura-Aguilar, I. Paris, P. Munoz, E. Ferrari, L. Zecca, FA. Zucca, “Protective and toxic roles of dopamine in Parkinson's disease”, J Neurochem 2014,129, 898–915.
  4. Dougherty, AA. Bonab, TJ. Spencer, SL. Rauch, BK. Madras, AJ. Fischman, “Dopamine transporter density in patients with attention deficit hyperactivity disorder,” Lancet 1999,354, 2132–2133,.
  5. Tripp, JR. Wickens, “Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.” J Child Psychol Psychiatry 2008,49, 691–704,.
  6. Zahid, M. Saeed, L.Yang, C. Beseler, E. Rogan, and E.L. Cavalieri, “Formation of dopamine quinone‐DNA adducts and their potential role in the etiology of Parkinson's disease”. IUBMB life, 2011, 63, 1087-1093.
  7. Jackowska, P. Krysinski, “New trends in the electrochemical sensing of dopamine.” Anal Bioanal Chem 2013,405, 3753–3771,.
  8. Pandikumar, GTS. How, TP. See, FS. Omar, S. Jayabal, KZ. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, SA. John, HN. Lim, NM. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine.” RSC Adv 2014, 4, 63296–63323,.
  9. Ganesh, AM. Chow, K. Kerman, “Recent advances in biosensors for neurodegenerative disease detection.” TrAC, Trends Anal Chem 2016,.363–370.
  10. Liu, L. Yuan, X. Dong, “Recent advances in analytical
    techniques for the determination of dopamine.” Int J Chem Study, 2015,3, 39–45.
  11. Sajid, MK. Nazal, M. Mansha, A. Alsharaa, SMS. Jillani, C. Basheer, “Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC,” Trends Anal Chem 76, 15–29, 2016.
  12. Yusoff, A. Pandikumar, R. Ramaraj, HN. Lim, NM. Huang,“Gold nanoparticle based optical and electrochemical sensing of dopamine.” Microchim Acta 2015,182, 2091–2114.
  13. Asefa, CT. Duncan, K. K. ” Sharma Recent advances in nanostructured chemosensors and biosensors.” Analyst 2009,134, 1980–1990,.
  14. Biju, “Chemical modifications and bio conjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.” Chem Soc Rev 2014, 43, 744–764,.
  15. Holzinger, A. Le Goff, S. Cosnier. “Nanomaterials for biosensing applications: a review.” Front Chem, 2014.
  16. Sun, S. Jiang, J. Xu, Z. Li, C. Li, Y. Jing, X. Zhao, J. Pan, C. Zhang, B. Man, “Sensitive and selective spr sensor employing gold-supported graphene composite film/D-shaped fiber for dopamine detection. J. Phys.”
    D Appl. Phys., 2019, 29, 465705.
  17. Amiri, S. Dadfarnia, A.M. Haji Shabani, S. Sadjadi, Non-Enzymatic sensing of dopamine by localized
    surface plasmon resonance using carbon dots-functionalized gold nanoparticles,” J. Pharm. Biomed. Anal, 2019, 172, 223–229.
  18. Pallikkarathodi Mani, M.Ganiga, J. Yriac, “MoS2 nanohybrid as a fluorescence sensor for highly selective
    detection of dopamine,” Analyst, 2018,143, 1691–1698,.
  19. Sharma, B.D. Gupta, “Surface plasmon resonance based highly selective fiber optic dopamine sensor fabricated using molecular imprinted GNP/SnO2 nanocomposite,” J. Light. Technol, 2018,  36, 5956–5962.
  20. Mudabuka, A.S. Ogunlaja, Z.R. Tshentu, N. Torto, “Electrospun Poly(Vinylbenzyl Chloride) Nanofibres Functionalised with Tris-(2, 20-Pyridylimidazole)Iron(III): A Test Strip for Detection of Ascorbic Acid and Dopamine,” Sens. Actuator B Chem, 2016, 222, 598–604.
  21. W. Qin, S.P. Wang, J. Li, T.H. Peng, Y. Xu, K. Wang, J.Y. Shi, C.H. Fan, D. Li, “Visualizing Dopamine
    Released from Living Cells Using a Nanoplasmonic Probe,” Nanoscale, 2015,7, 15070–15074.
  22. Ming, T. Peng, Y. Tu, “Multiple Enhancement of Luminol Electrochemiluminescence Using Electrodes Functionalized with Titania Nanotubes and Platinum Black: Ultrasensitive Determination of Hydrogen Peroxide, Resveratrol, and Dopamine,” Microchim. Acta, 2016,.183, 305–310.
  23. Zhu, Y. Chen, W. Wang, H. Zhang, C. Ren, H. Chen, X. A. Chen, “Sensitive Biosensor for Dopamine Determination Based on the Unique Catalytic Chemiluminescence of Metal-Organic Framework HKUST-1,”
    Sens. Actuators B Chem, 2015, 210, 500–507.
  24. Chiadini, V. Fiumara, A. Scaglione, and A. Lakhtakia, “Compound guided waves that mix characteristics of surface-plasmon-polariton, Tamm, Dyakonov–Tamm, and Uller–Zenneck waves,” JOSA B, 2016,1197-1206.
  25. J. Lee, J. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Optics express, 2013, 28817-28823,.
  26. Shelykh, M. Kaliteevskii, A. Kavokin, S. Brand, R. Abram, J. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” physica status solidi (a), 2007,522-525,.
  27. A. Macleod, Thin-film optical filters: CRC press, 2017.