تأثیر حلال و غلظت مواد اولیه در سنتز سونوشیمیایی نانو ساختار پلیمر کوئوردیناسیونی مس(II) و تجزیه سطح هیرشفیلد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

چکیده

ننانوبسپار کوئوردیناسیونی از مس(II) به فرمول [Cu3(L)(NO3)4(H2O)4]n (1)  بوسیله روش سونوشیمیایی سنتز شده است. برای مطالعه تاثیر حلال و غلظت مواد اولیه بر روی اندازه نانوبسپار کوئوردیناسیونی آزمایش خاصی طراحی شد و شش نمونه از ترکیب به وسیله روش سونوشیمیایی تهیه شدند. حلال قطبی­تر منجر به کوچکتر شدن و یکنواخت­تر شدن ریخت­ شناسی نانوذرات می­ شود. از نانوبسپارهای کوئوردیناسیونی سنتزی به عنوان پیش ماده برای تهیه نانوذرات مس (II) اکسید به روش کلیسنه کردن استفاده شد. ساختار و ریخت­ شناسی نانوذرات بسپار کوئوردیناسیونی با استفاده از تصاویر SEM، XRD و طیف‌سنجی FT-IR مورد مطالعه قرار گرفتند. پایداری حرارتی نانوذرات بوسیله (TGA) و (DTA) مورد بررسی قرار گرفتند. رفتار نوری بسپار کوئوردیناسیونی به صورت نانوذره و توده، با استفاده از طیف جذبی UV-Vis و فوتولومینسانس بررسی شد. نتایج نشان داد توافق خوبی بین طول موج و اندازه نانوذرات وجود دارد. تجزیه سطح هیرشفلد و نقشه های دو بعدی اثر انگشت برای تجزیه برهم ­کنش­های بین مولکولی مورد استفاده قرار گرفت و نشان داد که برهم­ کنشهای H…H با 14/6 درصد، C…C با 6/5 درصد و N…O با 3/9 درصد و N…H با 3/8 درصد  بیشترین سهم را در ساختار بلوری به خود اختصاص داده ­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of solvent and initial reagents concentration in sonochemical synthesis Cu(II) coordination polymer nanostructures and Hirshfeld surface analysis

نویسندگان [English]

  • mohamad hasan saadatian
  • Gholam Hossein Shahverdizadeh
  • mirzaagha babazadeh
  • ladan Ejlali
  • mosa Eshaghi
چکیده [English]

Nano-sized of a copper (II) coordination polymer [Cu3(L)(NO3)4(H2O)4]n (1) {H2L=[2,6-bis(pyridine-2-ylmethylidene) hydrazinocabonyl] pyridine} compound was synthesized by sonochemistry method. To study the influence of solvent and concentrations of initial reagents on the nano-sized compound (1) certain test was designed and six samples of 1 were prepared through the sonochemical irradiation process. Polar solvent led to smaller and uniform nanostructure particle morphology. To prepare copper (II) oxide nano-sized by calcination specimen of 1 was used as a precursor. The structure and morphology of nanoparticles are characterized by using scanning electron microscopy (SEM), x-ray powder diffraction (XRD) and IR spectroscopy. The thermal stability of nano compound 1 was studied by thermal gravimetric (TGA) and differential thermal analyses (DTA). In order to study the optical behavior of the prepared compound 1 as nanoparticle and bulk form the UV-Vis absorption spectral along with photoluminescence was carried. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyze the intermolecular interactions, indicating that the most important contributions for the crystal packing are from O…H/H…O (31.7%), H…H (14.6%), C…C (6.5%), N…O (3.8%) and N…H/H…N (3.8%).

کلیدواژه‌ها [English]

  • Coordination polymers
  • Sonochemical
  • Nanostructure
  • Hirshfeld surface analysis
[1] Mohammad Hasan S, Gholam Hossein SH, Mirzaagha B, Ladan E, Moosa E. The effect of ultrasonic irradiation power and initial concentration on the particle size of nano copper(II) coordination polymer: Precursors for preparation of CuO nanostructures. Journal of Polymer Research. 2022; 29:57.
[2] Mohammad Jaffar S, Payam H, Azita F, Janczak J. Ultrasonic synthesis of two new zinc (II) bipyridine coordination nano-particles polymers: New Precursors for preparation of zinc (II) oxide nano-particles. Ultrasonics sonochemistry. 2017; 35: 502-513.
[3] Sahar U, Kamran A, White J. Sonochemical synthesis, structural characterizations and antibacterial activities of biocompatible Copper (II) coordination polymer nanostructures. Journal of Solid-State Chemistry. 2019; 276: 61-67.
[4] Wang R, Hong M, Weng J. A one-dimensional coordination polymer containing tetragonal boxes with solvent guests, Inorganic chemistry communication. 2000; 3:480-488.
[5] Bagher S, Payam H, Ali Reza R, Janczak J. The effects of modifying reaction conditions in green sonochemical synthesis of a copper (II) coordination polymer as well as in achieving to different morphologies of copper (II) oxide micro crystals via solid-state process. Inorganica Chimica Acta. 2018; 483:516-526.
[6] Tianle Zh, Kaili W, Changpeng J, Xianggao M. Linear coordination polymers Assembled from Dinuclear Cu (I) units: Interchain  -  and CH -  Interactions in controlling Alignments of polymeric Chains in solid state. Journal of Inorganic and Organometallic Polymers and Materials. 2014; 24: 865-873.
[7] Mina A, Mohammad H, Keyvan M, Vaclav E, Michal D. Synthesis, characterization and thermal studies of a nanosized 1D l-arginine/copper (II) coordination polymer by sonochemical method: a new precursor for preparation of copper (II) oxide nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials. 2020; 30:2907-2915.
[8] Farshid D, Janet S, Faezeh M, Seyed Dariush T, Janczak J. A new stable and reusable nanoscale Cu (II) coordination polymer as an efficient dye adsorbent. Inorganica Chimica Acta. 2020; 509:119716.
[9] Moreno-Gomez L, sanchez-Ferez F, Calvet T, Font-Bardia M, Pons J. Zn (II) and Cd (II) monomer, dimer and polymer compounds coordinated by benzoic acid and 4- acetyl pyridine: Synthesis and crystal structures. Inorganica Chimica Acta. 2020; 506:119561.
[10] Gholam Hossein SH, Fateme H, Babak M. Synthesis and structural characterization of new lead (II) discrete and infinite cage-like framework: a precursor to produce pure phase nano-sized lead (II) oxide. Journal of inorganic and organometallic polymer. 2022; 22:903-909.
[11] Bayat Y, Shirazinia SR, Marandi R. Ultrasonic Assisted preparation of Nano HMX. International Journal of Nanoscience and Nanotechnology. 2010; 6:210-215
[12] Faezeh M, Janet S. Sonochemical synthesis of a new nano-sized barium coordination polymer and its application as a heterogeous catalyst towards sono- synthesis of biodiesel. Ultrasonic Sonochemistry. 2018; 42:193-200.
[13] Saeideh S, Kamran A, S. Morteza FF, Jonathan MW. Sonochemical synthesis and crystal structure of copper (II)-based biodegradable antibacterial scaffold. Journal of Molecular Structure. 2022; 1267:133521.
[14] Aycan T, Öztürk F, Demir S, Özdemir N, Paşaoğlu H. Cobalt(III) complex of substituted nalidixic acid: Synthesis, characterization (IR, UV, EPR), single crystal X-ray, antimicrobial activity, Hirshfeld surface analysis and molecular docking. Journal of Molecular Structure. 2021; 1225:129043.
[15] Saha S, Sasmal A, Choudhury CR, Pilet G, Antonio B, Antonio F, Sharmila Ch, Samiran M. Synthesis, crystal structure, antimicrobial screening and density functional theory calculation of nickel(II), cobalt(II) and zinc(II) mononuclear Schiff base complexes. Inorganica Chim Acta. 2015; 425:211-220.
[16] Cho H, Joon Jung M, Jeon J, Lee H, Nayab S. Synthesis, structural characterization and MMA polymerization studies of dimeric 5-coordinate copper (II), cadmium (II), and monomeric 4- coordinate zinc (II) complexes supported by N-methyl-N-[(pyridine-2-yl)methyl]benzeneamine. Inorganica Chimica Acta. 2019; 487:221-227.
[17] Jingsheng H, Yun CH, Pengxiang ZH, Yunlong Y, Shiyong ZH, Zhongwei G. Co-solvent polarity controlled self-assembly of tetraphenylethylene-buried amphiphile for size-regulated tumor accumulation. Regenerative Biomaterials. 2018; 5:275–282.
[18] Elham GH, Gholam Hossein SH, Javad MT, Babak M. Ultrasonic- assisted synthesis of nano lead (II) coordination Thermal, optical properties and XRD studies. Ultrason sonochem. 2018; 42:155-161.
[19] Huang B, De-Jun C, Man-Man ZH, Fang Y, Xun ZH, Liu-Chan Y, Ying R. Sonochemical synthesis and anti-gastric cancer activity of a Cu (II) coordination polymer. Inorganic and Nano-Metal Chemistry. 2021;1512-1518.
[20] Hoan HN, Christina EH, Greg H. Guest Inclusion of pyridine molecules into a copper (II) Bilayer Hydrogen- Bonded Metal-organic Framework. Journal of Chemical Crystallography. 2021; 51:82-87.
[21] Samira S, Parvaneh I, Hadi AR, Leyla S. Sonochemical synthesis of a new nano-scale 1D copper organic coordination polymer; thermal and spectroscopic characterizations. Journal of Macromolecular Science, Part A. 2016; 53.4:227-236.
[22] Lu JJ, Liu Y, Li HY, Cui ZW, Liu QQ, Wang XL. Metal and bis (Pyridyl)-bis (amide) ligand- tuned three new nickel (II) / Copper (II) coordination polymers: syntheses, structures and properties. Polyhedron. 2022; 216:115699.
[23] Chisca D, Croitor D, B. Coropeeanu E, S. Fonari M. Four Cu (II) coordination polymers with biocompatible isonicotinamide and picolinate ligands in interplay with anionic and neutral linkers. Inorganic Chemistry Communications. 2021;132: 108864.
[24] Navid H, K. Bhardwaj V. The Influence of Different coordination Environment in one- Dimensional Cu (II) coordination polymers on photo-degradation of organic Dyes" Dalton Transactions. 2016; 45:7697-7707.
[25] Nakamoto K. Infrared and Raman spectra of Inorganic and coordination compounds. John Wiley & Sons, Inc. 2006.
[26] Azadeh T, Omid A, Keyvan B. Photo catalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2-aminonic altinatol Copper (II) microflakes. Transactions of Nonferrous Metals Society of China. 2015; 25:3634-3642.
[27] Wang H, Jin-Zhong X, Zhu JJ Chen H. Preparation of CuO nanoparticles by microwave irradiation. Journal of Crystal Growth. 2002; 244:88-94.
[28] Huang C-Y, Chatterjee A, Liu S. B. Photoluminescence properties of a single tapered CuOnanowive. Applied surface science. 2010; 256:3688-3692.
[29] Sawsan D, Yousef H, Ahmad IA, Nacir T. Synthesis and optical properties of colloidal CuO nanoparticles. Journal of lumineseence. 2014; 151:149-154.
[30] Banerjee A, Chattopadhyay SH. Synthesis and characterization of mixed valence cobalt(III)/cobalt(II) complexes with N,O-donor Schiff base ligands. Polyhedron. 2019; 159:1-11.
[31] Zoufalý P, Kliuikov A, Čižmár E, Císařová I, Herchel R. Cis and Trans Isomers of Fe(II) and Co(II) Complexes with Oxadiazole Derivatives - Structural and Magnetic Properties. European Journal of Inorganic Chemistry. 2021;12: 1190-1199.
[32] Elleuch N, Fredj D, Chniba-Boudjada N, Boujelbene M. Synthesis of a New Chloro Antimony Complex with Pyridinium Derivative: Crystal Structure, Hirshfeld Surface Analysis, Vibrational, and Optical Properties. Journal of Inorganic and Organometallic Polymers and Materials. 2020; 30:889-898.