بررسی پهن شدگی در میکروسلول فیبری بخار اتمی روبیدیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

آزمایشگاه مگنتوپلاسمونیک، پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران

چکیده

 در چند سال گذشته، تلاش برای ساخت سلول‌های اتمی کوچک افزایش یافته است و امکان ساخت مراجع فرکانسی کوچک و یکپارچه، ساعت‌های نوری مینیاتوری و حسگرهای میکرونی و نانومتری را فراهم کرده است. در این راستا و به منظور افزایش برهمکنش نور و بخار های قلیایی حرارتی، برهمکنش‌های نوری میدان میرا با توان کم نوری را در یک میکروفیبر مخروطی جاسازی‌شده بررسی شده است. نتایج حاصل از طیف ­سنجی عبوری در این سل های نوظهور بیانگر افزایش پهن شدگی در مقایسه با سلول­های استاندارد بخار اتمی روبیدیوم است. در این سیستم های میکرو متری، امکان برهم­کنش‌های نوری غیرخطی با توان‌های سطح میلی وات،با وجود پهن شدگی زمان گذار بسیار بزرگ‌تر از پهن شدگی ذاتی اتم فراهم شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Rubidium atomic vapor-fiber cell spectroscopy

نویسندگان [English]

  • seyedeh Mehri Hamidi
  • mahnaz asadolahsalmanpour
  • Mohammad Mosleh
  • Reza Gholami
Shahid Beheshti University
چکیده [English]

In the past few years, efforts to manufacture small atomic vapor cells have intensified, making it possible to build small, integrated frequency references, miniature optical clocks, and micron and nanometer sensors. In this direction and in order to increase the interaction of light and thermal alkali vapors, the optical interactions of the evanescent field with low optical power have been investigated in a micro-tapered fiber embedded in hot rubidium vapor. The results of transmission spectroscopy in these emerging cells show increased broadening compared to standard rubidium atomic vapor cells. In these micrometer systems, the possibility of nonlinear optical interactions with powers of milli watt-level is provided, despite the broadening of the transition-time much larger than the intrinsic broadening of the atom.

کلیدواژه‌ها [English]

  • Tapered fiber optic
  • Rubidium atomic vapor cell
  • Transit-time broadening
  • Evanescent field
 
[1] J. C. Camparo, “The rubidium atomic clock and basic research,” AEROSPACE CORP EL SEGUNDO CA PHYSICAL SCIENCES LABS, 2007. 
[2] S. Jahani, S. Kim, J. Atkinson, J. C. Wirth, F. Kalhor, A. A. Noman, W. D. Newman, P. Shekhar, K.  Han, V. Van, RG. DeCorby,” Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration,” Nature communications, May 14;9(1), 1-9, 2018.
[3] S. A. Aljunid, E. A. Chan, G. Adamo, M. Ducloy, D. Wilkowski and N. I. Zheludev, “Atomic response in the near-field of nanostructured plasmonic metamaterial,” Nano letters, 16(5), pp.3137-3141, 2016.
[4] X. Wang, M. Ye, F. Lu, Y. Mao, H. Tian, & J. Li, “Recent Progress on Micro-Fabricated Alkali Metal Vapor Cells,” Biosensors, 12(3), 165, 2022.
[5] R. Han, Z. You, F. Zhang, H. Xue, Y. Ruan,” Microfabricated vapor cells with reflective sidewalls for chip scale atomic sensors. Micromachines, “Apr 11;9(4):175, 2018.
[6] T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker, D. Pizzey, I. G. Hughes & C. S. Adams, “Nanostructured alkali-metal vapor cells,” Physical Review Applied, 14(3), 034054, 2020.
[7] T. D. Bradley, J. J. McFerran, J. Jouin, E. Ilinova, P. Thomas, F. Benabid, “Progress towards atomic vapor photonic microcells: Coherence and polarization relaxation measurements in coated and uncoated HC-PCF,” Advances in Slow and Fast Light VI, 8636, 77-85. SPIE, 2013.
[8] B. Wu, J. F. Hulbert, E. J. Lunt, K., Hurd, A. R. Hawkins, H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photonics, 4(11), 776-779, 2010.
[9] K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Optics express, 19(23), 22874-22881, 2011.
[10] P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, A. L. Gaeta, “Chip-based optical interactions with Rubidium vapor,” Quantum Electronics and Laser Science Conference. Optica Publishing Group, 2010.
[11] L. Stern, B. Desiatov, N. Mazurski, U. Levy, “Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides,” Nature communications, 8(1), 1-7, 2017.
[12] A. Riahi, M. Vahedi, J. Khalilzadeh, V. Dastjerdi, “Investigation of the effect of the taper geometry on the sensitivity of tapered-fiber gas sensors,” Journal of Modern Optics, 67(14), 1259-1266, 2020.
[13] Y. Xu, P. Lu, L. Chen, X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers, 5(1), 3, 2017.
[14] M. Yasin, S. W. Harun, H. Arof, eds. Selected topics on optical fiber technology. BoD–Books on Demand, 2012. 
[15] G. Nienhuis, F. Schuller, M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle.” Physical Review A, 38(10), 5197, 1988.
[16] R. Kondo, S. Tojo, T. Fujimoto, M. Hasuo, “Shift and broadening in attenuated total reflection spectra of the hyperfine-structure-resolved D 2 line of dense rubidium vapor,” Physical Review A, 73(6), 062504, 2006.
[17] L. Stern, B. Desiatov, I. Goykhman, U. Levy, “Nanoscale light–matter interactions in atomic cladding waveguides,” Nature communications, 4(1), 1-7, 2013.
[18] W. Demtröder, “Laser spectroscopy.Vol. 2. Berlin, Heidelberg: springer, 1982. 
[19] G.  Sagué, E. Vetsch, W. Alt, D. Meschede, A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: Light-induced dipole forces and surface interactions,” Physical review letters, 99(16), 163602, 2007.