سنتز سبز نانوذرات اکسید روی دوپ شده با طلا و تحلیل پراش اشعه ایکس به دو روش نمودار اندازه-کرنش و فرمول شرر

نوع مقاله : مقاله پژوهشی

نویسنده

گروه بیوتکنولوژی، دانشکده علوم زیستی، دانشگاه الزهرا (س)، تهران، ایران

چکیده

سنتز نانوذرات ZnAuO با استفاده از فرآیند سل-ژل و به روش سبز انجام شد. افزودن ناخالصی با فرمول Zn1-x Au xO است که xبرابر 0.0، 0.03، 0.06 و 0.09 در نظر گرفته شده است. این ترکیبات به مدت 2 ساعت در دمای 650 درجه سانتیگراد در کلسیناسیون ثابت باقی ماندند. مورفولوژی و ساختار این نانوذرات با استفاده از میکروسکوپ الکترونی عبوری (TEM) و تجزیه و تحلیل پراش اشعه ایکس (XRD) مورد بررسی قرار گرفت. کاهش در پیک‌های شدت در الگوهای XRD نشان می‌دهد که اندازه‌های کریستالی ZnO با افزایش غلظت طلا کاهش می‌یابد که می‌تواند مربوط به نقص‌هایی باشد که به دلیل وجود اتم‌های طلا در شبکه ZnO رخ می‌دهد. تصاویر TEM نانوذرات تک کریستالی و نزدیک به کروی را بیان می کنند و با کاهش غلظت آلاینده، اندازه ذرات نمونه های دوپ شده کاهش می یابد. برای محاسبه کرنش شبکه و اندازه کریستال از روش نمودار اندازه-کرنش (SSP) و فرمول شرر استفاده شد. تفاوت تخمین زده شده بین روش های SSP و شرر به این دلیل است که SSP سهم کرنش را در گسترش پیک محاسبه می کند، اما روش شرر نمی تواند این سهم کرنش را نشان دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Facile green synthesis of Au-doped ZnO nanoparticles prepared and X-ray analysis by Scherrer and size-strain plot methods

نویسنده [English]

  • Nadia Mahmoudi Khatir
Academic Staff/Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
چکیده [English]

Synthesizing of ZnAuO Nanoparticle is made using the sol-gel process. The sol-gel process is a friendly and green synthesis technique in gelatin media. This formula is Zn1-x Au xO, which x is equal 0.0, 0.03, 0.06 and 0.09. This component, for 2 hours, remained at fixed calcination at 650 °C temperature. Morphology and structure of these NPs were investigated utilizing transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The decrease in intensity peaks in XRD patterns shows that the ZnO crystalline sizes decreased as the Au concentration increases that can be related to defects that occur due to the presence of Au atoms in ZnO lattice. TEM images express mono-crystalline, closely spherical NPs. By decreasing dopant concentration, the particle size of the doped samples decreases. The single crystalline nature of the samples also proved by XRD patterns, and that exhibits the hexagonal wurtzite phase. Size–strain plot (SSP) method and the Scherrer formula were used to calculate lattice strain and crystallite size. The estimated difference between SSP and Scherrer methods is because SSP calculates the strain contribution on the peak broadening, but the Scherrer method cannot demonstrate this strain contribution.

کلیدواژه‌ها [English]

  • ZnO
  • green synthesis
  • nanoparticle
  • Biopolymer
  • Sol-gel method
[1]        Pham, C.V., S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem. “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials”, Nanoscale, 8, 9682-9687, 2016.
[2]        Sharma, D.K., S. Shukla, K.K. Sharma, and V. Kumar. “A review on ZnO: Fundamental properties and applications”, Materials Today: Proceedings, 2020.
[3]        Hu, F., L. Tao, H. Ye, X. Li, and X. Chen. “ZnO/WSe 2 vdW heterostructure for photocatalytic water splitting”, Journal of Materials Chemistry C, 7, 7104-7113, 2019.
[4]        Wu, H., H. Jile, Z. Chen, D. Xu, Z. Yi, X. Chen, J. Chen, W. Yao, P. Wu, and Y. Yi. “Fabrication of ZnO@ MoS2 nanocomposite heterojunction arrays and their photoelectric properties”, Micromachines, 11, 189, 2020.
[5]        Galdámez-Martinez, A., G. Santana, F. Güell, P.R. Martínez-Alanis, and A. Dutt. “Photoluminescence of ZnO nanowires: a review”, Nanomaterials, 10, 857, 2020.
[6]        Wang, Y., J. Song, H. Zhang, X. Zhang, G. Zheng, J. Xue, B. Han, X. Meng, F. Yang, and J. Li. “High optoelectronic performance of ZnO films co-doped with ternary functional elements of F, Al and Mg”, Journal of Alloys and Compounds, 822, 153688, 2020.
[7]        Bouziani, I., M. Kibbou, Z. Haman, Y. Benhouria, I. Essaoudi, A. Ainane, and R. Ahuja. “Electronic and optical properties of ZnO nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations”, Physica Scripta, 95, 015804, 2019.
[8]        Zheng, P., B. Sun, Y. Chen, H. Elshekh, T. Yu, S. Mao, S. Zhu, H. Wang, Y. Zhao, and Z. Yu. “Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions”, Applied Materials Today, 14, 21-28, 2019.
[9]        Zhao, D., Z. Wu, J. Yu, H. Wang, Y. Li, and Y. Duan. “Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating”, Chemical Engineering Journal, 383, 123230, 2020.
[10]      Lee, S.-C., H.-H. Park, S.-H. Kim, S.-H. Koh, S.-H. Han, and M.-Y. Yoon. “Ultrasensitive fluorescence detection of alzheimer’s disease based on polyvalent directed peptide polymer coupled to a nanoporous ZnO nanoplatform”, Analytical chemistry, 91, 5573-5581, 2019.
[11]      Saroj, R.K., S. Deb, and S. Dhar. “n-ZnO/p-GaN heterojunction ultraviolet (UV) photo detectors with high responsivity and fast response time grown by chemical vapor deposition technique”, Semiconductor Science and Technology, 33, 125012, 2018.
[12]      Abbasi, B.H., M. Shah, S.S. Hashmi, M. Nazir, S. Naz, W. Ahmad, I.U. Khan, and C. Hano. “Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum)”, Nanomaterials, 9, 1171, 2019.
[13]      Dincă, V., A. Mocanu, G. Isopencu, C. Busuioc, S. Brajnicov, A. Vlad, M. Icriverzi, A. Roseanu, M. Dinescu, and M. Stroescu. “Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties”, Arabian Journal of Chemistry, 13, 3521-3533, 2020.
[14]      Theerthagiri, J., S. Salla, R. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, and H.-S. Kim. “A review on ZnO nanostructured materials: energy, environmental and biological applications”, Nanotechnology, 30, 392001, 2019.
[15]      Huaxu, L., W. Fuqiang, Z. Dong, C. Ziming, Z. Chuanxin, L. Bo, and X. Huijin. “Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system”, Energy, 194, 116913, 2020.
[16]     Burke-Govey, C.P., ZnO nanowires and their application in field-effect transistors. 2018, Victoria University of Wellington.
[17]      Mohammadi, E., M. Aliofkhazraei, M. Hasanpoor, and M. Chipara. “Hierarchical and complex ZnO nanostructures by microwave-assisted synthesis: morphologies, growth mechanism and classification”, Critical Reviews in Solid State and Materials Sciences, 43, 475-541, 2018.
[18]      Basnet, P. and S. Chatterjee. “Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review”, Nano-Structures & Nano-Objects, 22, 100426, 2020.
[19]      Gerbreders, V., M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, and A. Ogurcovs. “Hydrothermal synthesis of ZnO nanostructures with controllable morphology change”, CrystEngComm, 22, 1346-1358, 2020.
[20]      Agarwal, S., P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, and K. Awasthi. “Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method”, Sensors and Actuators B: Chemical, 292, 24-31, 2019.
[21]      Saini, S., P. Mele, T. Oyake, J. Shiomi, J.-P. Niemelä, M. Karppinen, K. Miyazaki, C. Li, T. Kawaharamura, and A. Ichinose. “Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition”, Thin Solid Films, 685, 180-185, 2019.
[22]      Vallejos, S., I. Gràcia, T. Lednický, L. Vojkuvka, E. Figueras, J. Hubálek, and C. Cané. “Highly hydrogen sensitive micromachined sensors based on aerosol-assisted chemical vapor deposited ZnO rods”, Sensors and Actuators B: Chemical, 268, 15-21, 2018.
[23]      Saravanakkumar, D., S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, and M. Maaza. “Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation”, Journal of semiconductors, 39, 033001, 2018.
[24]      Adam, R.E., G. Pozina, M. Willander, and O. Nur. “Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH”, Photonics and Nanostructures-Fundamentals and Applications, 32, 11-18, 2018.
[25]      Anitha, S. and S. Muthukumaran. “Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method”, Materials Science and Engineering: C, 108, 110387, 2020.
[26]      Shkir, M., B. Palanivel, A. Khan, M. Kumar, J.-H. Chang, A. Mani, and S. AlFaify. “Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping”, Chemosphere, 291, 132687, 2022.
[27]      Sabbagh, F., K. Kiarostami, N.M. Khatir, S. Rezania, I.I. Muhamad, and F. Hosseini. “Effect of zinc content on structural, functional, morphological, and thermal properties of kappa-carrageenan/NaCMC nanocomposites”, Polymer Testing, 93, 106922, 2021.
[28]      Sabbagh, F., K. Kiarostami, N. Mahmoudi Khatir, S. Rezania, and I.I. Muhamad. “Green synthesis of Mg0. 99 Zn0. 01O nanoparticles for the fabrication of κ-Carrageenan/NaCMC hydrogel in order to deliver catechin”, Polymers, 12, 861, 2020.
[29]      Mahmoudi Khatir, N., Z. Abdul-Malek, A.K. Zak, A. Akbari, and F. Sabbagh. “Sol–gel grown Fe-doped ZnO nanoparticles: antibacterial and structural behaviors”, Journal of Sol-Gel Science and Technology, 78, 91-98, 2016.
[30]      Ashour, A., A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr. “Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique”, Particuology, 40, 141-151, 2018.
[31]      Maleki, A., N. Hosseini, and A. Taherizadeh. “Synthesis and characterization of cobalt ferrite nanoparticles prepared by the glycine-nitrate process”, Ceramics International, 44, 8576-8581, 2018.
[32]      Bethke, K., S. Palantöken, V. Andrei, M. Roß, V.S. Raghuwanshi, F. Kettemann, K. Greis, T.T. Ingber, J.B. Stückrath, and S. Valiyaveettil. “Functionalized cellulose for water purification, antimicrobial applications, and sensors”, Advanced Functional Materials, 28, 1800409, 2018.
[33]      Ramgir, N.S., Y.K. Hwang, I.S. Mulla, and J.-S. Chang. “Effect of particle size and strain in nanocrystalline SnO2 according to doping concentration of ruthenium”, Solid State Sciences, 8, 359-362, 2006.
[34]      Jung, H.J., R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, and M.Y. Choi. “Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ ZnO and ZnO/Ag nanostructures”, Journal of Environmental Sciences, 74, 107-115, 2018.
[35]      Kumari, V., A. Mittal, J. Jindal, S. Yadav, and N. Kumar. “S-, N-and C-doped ZnO as semiconductor photocatalysts: A review”, Frontiers of Materials Science, 13, 1-22, 2019.
[36]      Nguyen, V.H., J. Resende, D.T. Papanastasiou, N. Fontanals, C. Jiménez, D. Muñoz-Rojas, and D. Bellet. “Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density”, Nanoscale, 11, 12097-12107, 2019.
[37]      Lee, B.R., J.S. Goo, Y.W. Kim, Y.-J. You, H. Kim, S.-K. Lee, J.W. Shim, and T.G. Kim. “Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications”, Journal of Power Sources, 417, 61-69, 2019.
[38]      Bhati, V.S., M. Hojamberdiev, and M. Kumar. “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review”, Energy Reports, 6, 46-62, 2020.
[39]      Wibowo, A., M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, and L.J. Diguna. “ZnO nanostructured materials for emerging solar cell applications”, RSC advances, 10, 42838-42859, 2020.
[40]      Consonni, V. and A.M. Lord. “Polarity in ZnO nanowires: a critical issue for piezotronic and piezoelectric devices”, Nano Energy, 83, 105789, 2021.
[41]      Abebe, B., E.A. Zereffa, A. Tadesse, and H. Murthy. “A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation”, Nanoscale research letters, 15, 1-19, 2020.
[42]      da Silva, B.L., B.L. Caetano, B.G. Chiari-Andréo, R.C.L.R. Pietro, and L.A. Chiavacci. “Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification”, Colloids and Surfaces B: Biointerfaces, 177, 440-447, 2019.
[43]      Shen, J., S. Fu, R. Su, H. Xu, F. Zeng, C. Song, and F. Pan. “Systematical study of the basic properties of surface acoustic wave devices based on ZnO and GaN multilayers”, Electronics, 10, 23, 2020.
[44]      Fu, S., W. Wang, L. Qian, Q. Li, Z. Lu, J. Shen, C. Song, F. Zeng, and F. Pan. “High-frequency surface acoustic wave devices based on ZnO/SiC layered structure”, IEEE Electron Device Letters, 40, 103-106, 2018.
[45]      Giljohann, D.A., D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin. “Gold nanoparticles for biology and medicine”, Spherical Nucleic Acids, 55-90, 2020.
[46]      Darabdhara, G., M.R. Das, S.P. Singh, A.K. Rengan, S. Szunerits, and R. Boukherroub. “Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics”, Advances in colloid and interface science, 271, 101991, 2019.
[47]      Liu, Y., Q. Chen, D.A. Cullen, Z. Xie, and T. Lian. “Efficient hot electron transfer from small Au nanoparticles”, Nano Letters, 20, 4322-4329, 2020.
[48]      Zak, A.K., W.A. Majid, M.E. Abrishami, and R. Yousefi. “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods”, Solid State Sciences, 13, 251-256, 2011.
[49]      Zhang, J.-M., Y. Zhang, K.-W. Xu, and V. Ji. “General compliance transformation relation and applications for anisotropic hexagonal metals”, Solid State Communications, 139, 87-91, 2006.
[50]      Pala, R.G.S. and H. Metiu. “Modification of the oxidative power of ZnO (1010) surface by substituting some surface Zn atoms with other metals”, The Journal of Physical Chemistry C, 111, 8617-8622, 2007.