اثر نقاط کوانتومی اکسید گرافن عامل‌دار شده با اسید سولفونیک بر عملکرد نمک‌زدایی غشای نانوفیلتراسیون کامپوزیتی لایه نازک

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم پایه، دانشکده علوم دریا، دانشگاه دریانوردی و علوم دریایی چابهار، شهر چابهار، استان سیستان و بلوچستان، ایران

چکیده

در این مطالعه، غشاهای نانوفیلتراسیون چندسازه­ی لایه نازک (TFC/NF) به‌روش پلیمریزاسیون سطحی بین مونومرهای پیپرازین، تری‌مزوﺋﯾل کلرید و نقاط کوانتومی اکسید گرافن (GOQD) یا GOQD عامل‌دار شده با اسید سولفونیک (SO3H) به‌عنوان اصلاح کننده‌های آب‌دوست تهیه شدند. ریخت‌شناسی سطح و آب‌دوستی غشاهای تهیه شده به‌ترتیب با میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM) و اندازه‌گیری زاویه تماس آب مورد مطالعه قرار گرفتند. آنالیزها سطح زبر با آب‌دوستی بیشتری را برای غشاهای اصلاح‌شده در مقایسه با غشای TFC خالص نمایش دادند. همچنین، عملکرد جداسازی غشاها با استفاده از سیستم فیلتراسیون جریان متقاطع برای محلول‌های نمک مختلف مورد بررسی قرار گرفت. غشای نانوفیلتراسیون اصلاح شده با 0/006 درصد وزنی GOQD، بهترین عملکرد جداسازی را برای دو نمک Na2SO4 و NaCl به‌ترتیب 94/3٪ و 38/2٪ نشان داد. در مقابل، بیشترین شار عبور آب برای دو نمک ذکر شده در بالا به‌ترتیب L/m2 h  60/1 و L/m2 h 63/1 برای غشای نانوفیلتراسیون اصلاح شده با 0/004 درصد وزنی  GOQDبه‌دست آمد. مقاومت در برابر رسوب غشاها نیز با استفاده از پروﺗﺋﻳﻦ آلبومین سرم گاوی (BSA) به‌عنوان عامل رسوب کننده، بر اساس کاهش شار آب در طول فرایند فیلتراسیون مورد ارزیابی قرار گرفت. پس از بهینه‌سازی غشای نانوفیلتراسیون با GOQD، غشای اصلاح شده با GOQD-SO3H با درصد وزنی مشابه نیز ساخته شد و مشخص شد که وجود GOQD-SO3H در لایه پلی آمید، خاصیت ضد گرفتگی غشا را نسبت به غشای TFC خالص و غشای حاوی GOQD بهبود می‌بخشد. در مجموع، این مطالعه نشان می‌دهد که عملکرد جداسازی غشاهای نانوفیلتراسیون را می‌توان به‌طور موثری از طریق تنظیم گروه‌های عاملی مختلف بر سطح GOQD تغییر داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of SO3H-functionalized graphene oxide quantum dots on the desalination performance of the thin film composite nanofiltration membrane

نویسنده [English]

  • Samaneh Mozaffari
assistant professor/ Department of Basic Sciences, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
چکیده [English]

In this study thin film composite nanofiltration (TFC/NF) membranes was prepared by interfacial polymerization between piperazine and trimesoyl chloride monomers and GOQD or SO3H-functionalized GOQD as a hydrophilic modifier. The surface morphology and hydrophilicity of the prepared NF membranes were studied by field emission scanning electron microscopy (FESEM) and water contact angle measurements, respectively. The analyses showed the rough surface and the higher hydrophilicity of the modified membranes. Also, the separation performance of the membranes was investigated by cross-flow filtration system using different salt solutions. The NF membrane modified with 0.006 wt% GOQD presented the best separation performance of 38.2% and 94.3% for two salts of NaCl and Na2SO4, respectively. By contrast, the highest water flux for the two salts mentioned above was obtained 60.1 L/m2 h and 63.1 L/m2 h, respectively, for the modified nanofiltration membrane with 0.004 wt% GOQD.The fouling resistance of the membranes was also evaluated using borine serum albumin (BSA) protein as a fouling agent, based on the water flux decline during the filtration process. After optimizing the nanofiltration membrane with GOQD, a membrane modified with GOQD-SO3H with the same weight percentage was fabricated and it was found that the presence of GOQD-SO3H in the polyamide layer improves anti-fouling properties of the membrane compared to the pure TFC membrane and membrane containing GOQD. Collectively, this study reveals that the separation performance of nanofiltration membranes can be effectively modulated through tuning the various functional groups on the GOQD surface.

کلیدواژه‌ها [English]

  • Thin film composite nanofiltration membrane
  • Sulfonic acid-functionalized graphene oxide quantum dots
  • Desalination performance
  • Anti-fouling properties
  • Polyamide layer
[1] P. S. Goh, A. F. Ismail, “A review on inorganic membranes for desalination and wastewater treatment”, Desalination, 434, 60-80, 2018.
[2] A. F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W. J. Lau, “Thin film composite membrane - recent development and future potential”, Desalination, 356, 140-148, 2015.
[3] H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, “Maximizing the right stuff: the trade-off between membrane permeability and selectivity”, Science, 356, 1138-1148, 2017.
[4] Y. He, Y. P. Tang, D. Ma, T. S. Chung, “UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal”, Journal of Membrane Science, 541, 262-270, 2017.
[5] J. Li, H. Wang, X. Yuan, J. Zhang, J. W. Chew, “Metal-organic framework membranes for wastewater treatment and water regeneration”, Coordination Chemistry Reviews, 404, 213116, 2020.
[6] X. Li, Y. Liu, J. Wang, J. Gascon, J. Li, B. Van Der Bruggen, “Metal-organic frameworks based membranes for liquid separation”, Chemical Society Reviews, 46, 7124-7144, 2017.
[7] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, “Antifouling membranes for sustainable water purification: strategies and mechanisms”, Chemical Society Reviews, 45, 5888-5924, 2016.
[8] M. M. Pendergast, E. M. V. Hoek, “A Review of water treatment membrane nanotechnologies”, Energy & Environmental Science, 4, 1946-1971, 2011.
[9] S. Bano, A. Mahmood, S. J. Kim, K. H. Lee, “Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling propertie”, Journal of Materials Chemistry A, 3, 2065-2071, 2015.
[10] Y. Kang, M. Obaid, J. Jang, I. S. Kim, “Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration membrane to enhance permeation and antifouling properties”, Desalination, 470, 114125-114136, 2019.
[11] W. Ma, T. Chen, S. Nanni, L. Yang, Z. Ye, M. S. Rahaman, “Zwitterion-functionalized graphene oxide incorporated polyamide membranes with improved antifouling properties”, Langmuir, 35, 1513-1525, 2019.
[12] L. Yu, W. Zhou, Y. Li, Q. Zhou, H. Xu, B. Gao, Z. Wang, “Antibacterial thin-film nanocomposite membranes with graphene oxide quantum dot-mediated silver nanoparticles for reverse osmosis application”, ACS Sustainable Chemistry & Engineering, 7, 8724-8734, 2019.
[13] Q. Xue, K. Zhang, “MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination”, Journal of Membrane Science, 640, 119808, 2021.
[14] Y.H. Kim, E. Yeol Lee, H. Ho Lee, T. Seok Seo, “Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor”, ACS Applied Materials & Interfaces, 9, 16375-16380, 2017.
[15] J. Hwang, A. Duy Duong Le, C. Tai Trinh, Q. Thuy Le, K.G. Lee, J. Kim, “Green synthesis of reduced-graphene oxide quantum dots and application for colorimetric biosensor”, Sensors and Actuators A: Physical, 318, 112495, 2021.
[16] Y. Liu, R. Liu, M. Li, F. Yu, C. He, “Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite”, Carbohydrate Polymer, 220, 141-148, 2019.
[17] G. S. Lai, W. J. Lau, P. S. Goh, Y. H. Tan, B. C. Ng, A. F. Ismail, “A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties”, Arabian Journal of Chemistry, 12, 75-87, 2019.
[18] J. Wang, N. Li, Y. Zhao, S. Xia, “Graphene oxide modified semi-aromatic polyamide thin film composite membranes for PPCPs removal”, Desalination and Water Treatment, 66, 166-175, 2017.
[19] X. Ding, X. D. Chen, X. L. Yu, X. Yu, “ A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity”, Sensors and Actuators B: Chemical, 276, 288-295, 2018.
[20] Z. Chen, M. Wang, A. A. Fadhil, C. Fu, T. Chen, M. Chen, A. A. Khadom, H. B. Mahood, “Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution”, Colloids and Surfaces, 627, 127209, 2021.
[21] A. Sun, L. Mu, X. Hu, “Graphene oxide quantum dots as novel nanozymes for alcohol intoxication”, ACS Applied Materials & Interfaces, 9. 12241-12252, 2017.
[22] A. Jeyaseelan, K. M. M. Katubi, N. S. Alsaiari, M. Naushad, N. Viswanathan, “Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption,” Diamond and Related Materials, 117, 108446, 2021.
[23] A. Rajput, V. Yadav, P. P. Sharma, V. Kulshrestha, “Synthesis of SGO composite interpenetrating network (CIPN) cation exchange membranes: Stability and salt removal efficiency”, Journal of Membrane Science, 564, 44-52, 2018.
[24] R. L. G. Lecaros, K. M. Deseo, W. S. Hung, L. L. Tayo, C. C. Hu, Q. F. An, H. A. Tsai, K. R. Lee, J. Y. Lai, “Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane”, Journal of Membrane Science, 576, 36-47, 2019.
[25] M. S. Hosseini, M. Masteri Farahani, S. Shahsavarifar, “ Chemical modification of reduced graphene oxide with sulfonic acid groups: Efficient solid acids for acetalization and esterification reactions”, Journal of the Taiwan Institute of Chemical Engineers, 102, 34-43, 2019.
[26] Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum, Y. Gogotsi, “Flexible and conductive MXene films and nanocomposites with high capacitance”, Proceedings of the National Academy of Sciences of the United States of America, 111, 16676, 2014.
[27] M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance”, Nature, 516, 78-81, 2014.
[28] D. Guo, Y. Xiao, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, H. Lin, “Fabrication of highperformance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly”, Journal of Colloid and Interface Science, 560, 273-283, 2020.
[29] M. Safarpour, A. Khataee, V. Vatanpour, “Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance”, Journal of Membrane Science, 489, 43-54, 2015.
[30] D. C. Ma, S. B. Peh, G. Han, S. B. Chen, “Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection”, ACS Applied Materials & Interfaces, 9, 7523-7534, 2017.
[31] X. Zhao, J. Ma, Z. Wang, G. Wen, J. Jian, F. Shi, L. Sheng, “Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane”, Desalination, 303, 29-38, 2012.
[32] H. Wu, B. Tang, P. Wu, “MWNTs/polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity”, The Journal of Physical Chemistry C, 114, 16395-16400, 2010.
[33] J. Park, W. Choi, S. H. Kim, B. H. Chun, J. Bang, K. B. Lee, “Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes”, Desalination and Water Treatment, 15, 198-204, 2010.
[34] M. F. A. Goosen, S. S. Sablani, “Fouling of reverse osmosis and ultrafiltration membranes: a critical review”, Separation Science and Technology, 39, 2261-2298, 2004.
[35] Y. Han, Y. Q. Jiang, C. Gao, “High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes”, ACS Applied Materials Interfaces, 7, 8147-8155, 2015.
[36] S. Subramanian, R. Seeram, “New directions in nanofiltration applications-are nanofibers the right materials as membranes in desalination?”, Desalination, 308, 198-208, 2013.
[37] J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan, “Graphene oxide as effective barrier on a porous nanofibrous membrane for water treatment”, ACS Applied Materials & Interfaces, 8, 6211-6218, 2016.
[38] H. Sun, P. Wu, “Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration”, Journal of Membrane Science, 564, 394-403, 2018.
[39] S. M. Xue, Z. L. Xu, Y. J. Tang, C. H. Ji, “Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)”, ACS Applied Materials & Interfaces, 8, 19135-19144, 2016.