بررسی اثر محیط توزیع به روش فراصوت روی خواص رئولوژی و ویسکوالاستیک کامپوزیت‌ اپوکسی- نانولوله‌های کربنی چند دیواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانوفناوری، دانشکده فنی، دانشگاه گیلان، رشت، ایران

2 گروه نانوفناوری،دانشکده فنی دانشگاه گیلان، رشت ،ایران

چکیده

در این مطالعه، تأثیر درصد وزنی نانولوله‌های کربنی چند دیواره (MWCNT) و محیط توزیع کننده نانولوله‌های کربنی به ‌عنوان عامل اصلی برای بررسی خواص رئولوژیکی و ویسکوالاستیک چندسازه‌های اپوکسی/MWCNT استفاده شد. برای توزیع نانولوله‌های کربنی، محیط‌‌های اپوکسی خالص و مخلوط حلال تتراهیدروفوران (THF) و پلیمر اپوکسی مورد استفاده قرار گرفت. کیفیت محیط توزیع‌کننده با استفاده از آزمون‌های رئولوژی، دینامیکی- حرارتی- مکانیکی (DMTA) و میکروسکوپ الکترونی روبشی (SEM) ارزیابی شد. نتایج آزمون رئولوژی نشان داد که مقادیر ′G و G′′ برای چندسازه‌های تولید شده پس از توزیع نانولوله‌های کربنی در محیط اپوکسی/حلال بیشتر از نمونه‌های بدون حلال بوده است. پس از ارزیابی داده‌های DMTA مشخص شد که بیشترین و کمترین مدول ذخیره (ʹE) در حالت شیشه‌ و در دمای ˚C37 برای نانوچندسازه 1-50W22.5RS  و اپوکسی خالص بدست آمده که به ترتیب ‌2855 و‌2100 مگا‌پاسکال بوده است (حدود 36 درصد افزایش برای نانو‌چندسازه). همچنین، نانوچندسازه1- 50W22.5RS نسبت به نمونه‌ای مشابه بدون حلال ، 19% افزایش مدول ذخیره را به همراه داشته است. توزیع 1 درصد وزنی MWCNT در اپوکسی در حضور حلال باعث افزایش 26/5% انرژی فعال‌سازی نانوچندسازه1-50W22.5RS  در مقایسه با نمونه بدون حلال 1-50W22.5R  شد.  رفتار ویسکوالاستیک به وسیله رسم نمودارهای Cole-Cole با استفاده از نتایج آزمایش DMTA مدل‌سازی شده و مدل پرز (Perez) برای تجزیه و تحلیل رفتار ویسکوالاستیک نانوچندسازه‌ها به کار برده شد. نتایج آزمون‌ها و بررسی مدل پرز نشان داد که بهترین خواص رئولوژی و ویسکوالاستیک برای پراکندگی 1 درصد وزنی MWCNT در محیط THF/اپوکسی به دست آمد. از تطابق مدل پرز و داده‌های DMTA نانوچندسازه‌ها، پارامتر 'χ  برای نانوچندسازه1-50W22.5RS  و 1-50W22.5R  به ترتیب 0/47 و 0/55 پیش ­بینی شد. این افت نشان‌دهنده توزیع مناسب نانولوله‌های کربنی در زمینه اپوکسی بوده که با نتایج تصاویر میکروسکوپ الکترونی مطابقت داشته است. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigations of the effect of dispersing medium by ultrasonic method on rheology and viscoelastic properties of epoxy/MWCNT composite

نویسندگان [English]

  • Arash Montazeri 1
  • Mehdi Pazhouhi mojdehi 2
1 University of Guilan-nanotechnology department
2 Nanotechnology department
چکیده [English]

In this study, the effect of the weight percentage of multi-walled carbon nanotubes (MWCNT) and the distribution medium of carbon nanotubes were used as the main factor to investigate the rheological and viscoelastic properties of epoxy/MWCNT composites. To distribute carbon nanotubes, pure epoxy media and a mixture of tetrahydrofuran (THF) solvent and epoxy polymer were used. The quality of the distributor medium was evaluated using rheology, dynamic-thermo-mechanical (DMTA) and scanning electron microscope (SEM) tests. The results of the rheology test showed the values of G and G for the composites produced after distribution of carbon nanotubes in the epoxy/solvent environment were higher than those without solvent. After evaluating the DMTA data, it was found the highest and lowest storage modulus (ʹE) in the glass state and at 37 ℃ for nanocomposite 1-50W22.5RS and pure epoxy were obtained, which were 2855 and 2100 MPa, respectively (about 36% increase for nanocomposite). Also, nanocomposite 1-50W22.5RS, compared to a similar sample without solvent, has increased the storage modulus by 19%. The distribution of 1% by weight of MWCNT in epoxy in the presence of solvent increased the activation energy of nanocomposite 1-50W22.5RS by 26.5% compared to the sample without solvent 1-50W22.5R. The viscoelastic behaviour was modeled by drawing Cole-Cole diagrams using DMTA test results, and the Perez model was used to analyse the viscoelastic behaviour of nanocomposites. The results of tests and analysis of the Perez model showed the best rheological and viscoelastic properties were obtained for the dispersion of 1% by weight of MWCNT in THF/epoxy medium. Comparing Perez's model and DMTA data of nanocomposites, the χ parameter was estimated to be 0.47 and 0.55 for nanocomposites 1-50W22.5RS and 1-50W22.5R, respectively. This decrease indicates the proper distribution of carbon nanotubes in the epoxy field, which is consistent with results of electron microscope images.

کلیدواژه‌ها [English]

  • Multi walled Carbon Nanotubes
  • Viscoelastic
  • Perez model
  • Rheology
[1] M. Ayatollahi, S. Shadlou, M. Shokrieh, M. Chitsazzadeh, “Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites,” Polymer Testing, 30, 548-556, 2011.
[2]  A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, A. Mohajeri, “Mechanical properties of multi-walled carbon nanotube/epoxy composites,” Materials & Design, 31, 4202-4208, 2010.
[3]   F.H. Gojny, M.H.G. Wichmann, U. Köpke, B. Fiedler, K. Schulte, “Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology, 64, 2363-2371, 2004.
[4]   A. Montazeri, A. Khavandi, J. Javadpour, A. Tcharkhtchi, “Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles,” Materials & Design, 31, 3383-3388, 2010.
[5]  A. Montazeri, N. Montazeri, S. Farzaneh, “Thermo-mechanical properties of multi-walled carbon nanotube (mwcnt)/epoxy composites,” International Journal of Polymer Analysis and Characterization, 16, 199-210, 2011.
[6] C. Tan, W. Zhang, Q. Wang, S. Li, G. Liu, H. Yao, Y. Yang, “Viscoelastic behavior of carboxylated multi-walled carbon nanotube reinforced epoxy composites with various frequencies,” Materials Research Express, 6, 095305, 2019.
[7]  S. Prolongo, M. Campo, M. Gude, R. Chaos- Morán, A. Ureña, “Thermo-physical characterisation of epoxy resin reinforced by amino-functionalized carbon nanofibers,” Composites Science and Technology, 69, 349-357, 2009.
[8]  I. Rafique, A. Kausar, B. Muhammad, “Composite of dgeba/tba epoxy blend and amine-functionalized carbon nanotube: Structural, thermal, nonflammability, and emi shielding studies,” Fullerenes, Nanotubes and Carbon Nanostructures, 24, 564-576, 2016.
[9]  L. Yuan, D. Wu, M. Zhang, W. Zhou, D. Lin, “Rheological percolation behavior and isothermal crystallization of poly (butyene succinte)/carbon nanotube composites,” Industrial & Engineering Chemistry Research, 50, 14186-14192, 2011.
[10]   Z. Fan, S.G. Advani,  “ Rheology of multiwall carbon nanotube suspensions,” Journal of Rheology, 51, 585-604, 2007.
[11]  X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, "Surfactant-assisted processing of carbon nanotube/polymer composites," Chemistry of materials, 12, 1049-1052 (2000).
[12]  D. Qian, E.C. Dickey, R. Andrews, T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, 76, 2868-2870, 2000.
[13]  M. Chitsazzadeh, H. Shahverdi, M.M. Shokrieh, “Fabrication of multi-walled carbon nanotube/vinyl ester nanocomposites: Dispersion and stabilization,” Defect and Diffusion Forum, 312-315, 460-465, 2011.
[14] C.A. Dyke, J.M. Tour, “Covalent functionalization of single-walled carbon nanotubes for materials applications,” The Journal of Physical Chemistry A, 108, 11151-11159, 2004.
[15]   A. Montazeri, M. Chitsazzadeh, "Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites," Materials & Design (1980-2015), 56, 500-508,2014.
[16]   Y.-H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang, B. Wang, “Investigation of the dispersion process of swnts/sc-15 epoxy resin nanocomposites,” Materials Science and Engineering: A, 385, 175-181, 2004.
[17]   S. Dumonteil, A. Demortier, S. Detriche, C. Raes, A. Fonseca, M. Rühle, J.B. Nagy, “Dispersion of carbon nanotubes using organic solvents,” Journal of Nanoscience and Nanotechnology, 6, 1315-1318, 2006.
[18] P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Composites Part A: Applied Science and Manufacturing, 41, 1345-1367,2010.
[19] C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St Clair, “Dispersion of single wall carbon nanotubes by in situ polymerization under sonication,” Chemical physics letters, 364, 303-308,2002.
 
[20] A.A. Aziz, D. Habibah, A. Ismawi, A. Suriani, M. Mahmood, “Reinforcement of multiwalled carbon nanotubes/natural rubber nanocomposite prepared by latex technology,” J. Sci. Technol. Trop, 8, 131-140,2012.
 
[21] M. Jamal-Omidi, M. ShayanMehr, “Improving the dispersion of SWNT in epoxy resin through a simple Multi-Stage method,” Journal of King Saud University - Science, 31, 202-208 ,2019.
 
[22] X. Sui, H.D. Wagner, “Tough nanocomposites: the role of carbon nanotube type,” Nano letters, 9, 1423-1426,2009.
[23]  P. Pötschke, M. Abdel-Goad, I. Alig, S. Dudkin, D. Lellinger, “Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites,” Polymer, 45, 8863-8870, 2004.
[24]  Y.S. Song, J.R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, 43, 1378-1385, 2005.
[25]  M. Moniruzzaman, K.I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, 39, 5194-5205, 2006.
[26]   Y.Y. Huang, E.M. Terentjev, “Dispersion and rheology of carbon nanotubes in polymers,” International Journal of Material Forming, 1, 63-74, 2008.
[27]   A. Montazeri, “The effect of functionalization on the viscoelastic behavior of multi-wall carbon nanotube/epoxy composites,” Materials & Design, 45, 510-517, 2013.
[28] F. Saeedi, A. Montazeri, Y. Bahari, M. Pishvaei, B. Jannat, “A study on the viscoelastic behavior of chitosan-polyvinyl alcohol-graphene oxide nanocomposite films as a wound dressing,” Polymers and Polymer Composites, 29, 1259-1272, 2020.
[29]  J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons, 1980.
[30]  J.-P. Pascault, H. Sautereau, J. Verdu, R.J. Williams, Thermosetting polymers, CRC press 2002.
[31]  J. Perez, Physics and mechanics of amorphous polymers, Routledge 2018.
[32]   A. Rudin, P. Choi, The elements of polymer science and engineering, Academic press, New York, 2012.
[33] T. Hatakeyama, F. Quinn, Thermal analysis: Fundamentals and applications to polymer science, John Wiley & Sons, , Chichester, 1999.
[34]  G. Li, P. Lee-Sullivan, R. Thring, “Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis,” Journal of Thermal Analysis and Calorimetry, 60, 377-390, 2000.
[35]   D. Ghanbari, B. Shirkavand Hadavand, M. Pishvaei, “Morphology and viscoelastic properties of uv cured-polyurethane acrylate/silicon carbide nanocomposites,” Iranian Polymer Journal, 30, 35-45, 2021.
[36]  I. Mijovic, “An introduction to the mechanical properties of solid polymers, im ward and dw hadley, john wiley & sons, chichester, uk, soft cover£ 19.95,” Polymers for Advanced Technologies, 5, 619-619, 1994.
[37]  M.M. Shokrieh, A. Saeedi, M. Chitsazzadeh, “Evaluating the effects of multi-walled carbon nanotubes on the mechanical properties of chopped strand mat/polyester composites,” Materials and Design, 56, 274-279, 2014.
[38]  M. Chapartegui, N. Markaide, S. Florez, C. Elizetxea, M. Fernandez, A. Santamaría, “Specific rheological and electrical features of carbon nanotube dispersions in an epoxy matrix,” Composites Science and Technology, 70, 879-884, 2010.
[39] K.S. Cole, R.H. Cole, “Dispersion and absorption in dielectrics i. Alternating current characteristics,” The Journal of Chemical Physics, 9, 341-351, 1941.
[40]   U. Khan, K. Ryan, W.J. Blau, J.N. Coleman, “The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites,” Composites Science and Technology, 67, 3158-3167, 2007.
[41] S.I. Kundalwal, A. Rathi, “Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique,” Journal of the Mechanical Behavior of Materials, 29, 77-85 (2020).
[42] S.G. Prolongo, M. Burón, M.R. Gude, R. Chaos-Morán, M. Campo, A. Ureña, “Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites,” Composites Science and Technology, 68, 2722-2730, 2008.
[43]   C.E. Pizzutto, J. Suave, J. Bertholdi, S.H. Pezzin, L.A.F. Coelho, S.C. Amico, “Study of epoxy/cnt nanocomposites prepared via dispersion in the hardener,” Materials Research, 14, 256-263, 2011.
[44]  A. Montazeri, K. Pourshamsian, M. Riazian, “Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis,” Materials & Design (1980-2015), 36, 408-414, 2012.