مطالعه رفتار الکتریکی گرافن/ عایق سیلیکون نیترید (SiN) با اتصالات فتولیتوگرافی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک،دانشگاه علم و صنعت ایران،تهران، ایران

2 دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

گرافن، ماده ­ای دوبعدی از اتم ­های کربن در یک شبکه ­ی لانه زنبوری است که در ساخت قطعات نانو و میکروالکترونیک کاربرد دارد. در این پژوهش، گرافن ورقه­ای و گسترده به ­ترتیب از طریق روش ­های لایه ­برداری میکرومکانیکی و انباشت بخار شیمیایی تولید شده ­اند. اتصالات الکتریکی از جنس کروم با روش­ الگودهی فتولیتوگرافی مستقیم و کاهنده، بر روی بستر­ عایق سیلیکون نیترید ایجاد شده­ اند. سپس، هر دو نوع گرافن به ­طور جداگانه بر روی این اتصالات انتقال یافته ­اند. مشخصه­ یابی سطحی با میکروسکوپ­ های نوری و نیروی اتمی و طیف­ سنجی رامان در شناسایی تعداد لایه ­ها، گستردگی، پیوستگی لایه­ ها و خلوص سطح موثر بوده است. همچنین مشخصه­ یابی جریان-ولتاژ با پروب چهار نقطه­ ای پویا و مشخصه ­یابی مقاومت با پروب چهار نقطه ­ای ایستا، انجام شده­ است. اثر نوع الگوها، ابعاد اتصالات، خلوص و تعداد لایه ­ها در رفتار الکتریکی گرافن مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می ­دهد گرافن ت ک­لایه در سنجش جریان-ولتاژ، رفتاری خطی و گرافن چندلایه رفتاری غیر خطی دارد

کلیدواژه‌ها


عنوان مقاله [English]

Electrical behavior of graphene/SiN insulator with photolithographic contacts

نویسندگان [English]

  • Maral Pourkhiabi 1
  • Asieh Sadat Kazemi 2
1 Department of Physics ,Iran University of Science and Technology, Tehran, Iran
2 Department of Physics, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Abstract: Graphene as a two-dimensional material of carbon atoms in a honeycomb lattice show that this substance is applicable in nano- and micro-scale electrical devices. In this research, small graphene flakes and large area graphene were produced through micromechanical exfoliation and chemical vapor deposition (CVD), respectively. They were further transferred on silicon nitride (SiN) insulating substrates that were previously decorated by electrical contacts. These contacts were obtained by direct and reduced photolithography. Surface characterization with optical and atomic force microscopies and Raman spectroscopy determined the number, extension, continuity of layers and purity of the surface. Current-voltage and resistance measurements were carried out via dynamic and static 4-point probes, respectively. The effect of type and dimensions of the contacts, purity of the surface and the number of graphene layers were explored. Our results demonstrated linear and nonlinear voltage behavior in single-layer and multi-layer graphene sheets, respectively.

کلیدواژه‌ها [English]

  • Extended Graphene
  • Chemical vapor deposition
  • Graphene flakes
  • Electrical characteristics
  • Surface characteristics
 
[1] Li, X., et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils, ”science, 324(5932),1312-1314,2009.
[2] M.I.  Katsnelson, “Carbon in Two Dimensions,” Cambridge University Press Cambridge, UK,2012.
[3]  D. Ge, et al., “Effect of patterned silicon nitride substrate on Raman scattering and stress of graphene,” Materials & Design, 198: p. 109338.2021.
[4] B.  Aufray, et al., “Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene,” Applied Physics Letters, 96(18),183102,2010.
[5] M.C. Lemme, et al., “A graphene field-effect device, ” IEEE Electron Device Letters, 28(4),282-284,2007.
[6] D. Sinha,  J.U. Lee, “Ideal graphene/silicon Schottky junction diodes, ” Nano letters, 14(8), 4660-4664,2014.
[7] R. Zhou, “Structural And Electronic Properties of Two-Dimensional Silicene, Graphene, and Related Structures, ” Wright State University,2012.
[8] R.J. Martín-Palma, and A. Lakhtakia, “Vapor-deposition techniques, in Engineered Biomimicry, ” Elsevier Inc. 383-398,2013.
[9] D.S. Kumar,  B.J. Kumar, and H. Mahesh, “Quantum nanostructures (QDs): an overview, ” Synthesis of Inorganic Nanomaterials,: 59-88,2018.
[10] V.B. Mbayachi, et al., “Graphene synthesis, characterization and its applications: A review, ”Results in Chemistry, 3, 100163,2021.
[11] S. Ullah, et al., “Graphene transfer methods: A review, ” Nano Research, 14(11), 3756-3772,2021.
[12] A.S. Kazemi, S.M. Hosseini, and Y. Abdi, “Large total area membrane of suspended single layer graphene for water desalination. Desalination, ” 451,160-171,2019.
[13] Yi, M. and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene, ” Journal of Materials Chemistry A, 3(22): p. 11700-11715,2015.
[14] N. Margaryan, N. Kokanyan, and E. Kokanyan, “Low-temperature synthesis and characteristics of fractal graphene layers, ” Journal of Saudi Chemical Society, 23(1),13-20,2019.
[15] A.S. Kazemi, et al., “Support based novel single layer nanoporous graphene membrane for efficacious water desalination, ” Desalination, 451,,148-159,2019.
[16]      N. Lisi, et al., “Contamination-free graphene by chemical vapor deposition in quartz furnaces, ” Scientific reports, 7(1),1-11,2017.
[17] I. Sharma, S.R. Dhakate, K.M. Subhedar, “CVD growth of continuous and spatially uniform single layer graphene across the grain boundary of preferred (111) oriented copper processed by sequential melting–resolidification–recrystallization, ” Materials Chemistry Frontiers, 2(6), 1137-1145,2018.
[18] O.M. Van't Erve, et al., “Graphene and monolayer transition-metal dichalcogenides: properties and devices, ” Journal of Materials Research, 31(7), 845-877,2016.
[19] F.C. Rufino, et al., “Definition of CVD Graphene Micro Ribbons with Lithography and Oxygen Plasma Ashing, ” Carbon Trends, 4: p. 100056,2021.
[20] X. Wan, K. Chen, and J. Xu, “Interface engineering for CVD graphene: current status and progress, ” Small, 10(22), 4443-4454,2014.
[21] Y. Dong,  et al., “Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst, ” Nanotechnology, 29(36),365301,2018.
[22] J. Moon,  et al., “Ultra-low resistance ohmic contacts in graphene field effect transistors, ”Applied Physics Letters, 100(20), 203512,2012.
[23] H. Zhong, et al., “Graphene in ohmic contact for both n-GaN and p-GaN. Applied Physics Letters, 104(21),212101,2014.
[24] R. Fates, J.P. Raskin, “Linear and non-linear electrical behaviors in graphene ribbon based devices, ” Journal of Science: Advanced Materials and Devices, 3(3), 366-370,2018.
[25] P. Sung Park, et al., “Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion, ” Applied Physics Letters, 102(15),153501,2013.
[26] C.-C. Chen, et al., “Graphene-silicon Schottky diodes, ” Nano letters, 11(5), 1863-1867,2011.
[27] J.A. Khamaj, “Influence of ion irradiation on temperature dependent electrical transport behavior of thin graphite flakes, ” Materials Science-Poland,  34(2), 399-403,2016.
[28] R. Zhang, et al., “Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials, ” Microelectronic Engineering, 154, 62-68,2016.
[29] R. Saito, et al., “Raman spectroscopy of graphene and carbon nanotubes, ” Advances in Physics,  60(3), 413-550,2011.
[30] A.C. Ferrari, D.M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene, ” Nature nanotechnology,  8(4), 235-246,2013.
[31] J. Fan, et al., “Comprehensive study of graphene grown by chemical vapor deposition, ” Journal of Materials Science: Materials in Electronics, 25(10): p. 4333-4338,2014.
[32] H.C. Lee,  et al., “Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene, ”RSC advances,  7(26,15644-15693,2017.
[33] S. Hussain,  et al., “A highly sensitive enzymeless glucose sensor based on 3D graphene–Cu hybrid electrode, ” New Journal of Chemistry, 39(9),7481-7487.2015.