استفاده از نانوذرات و نانومیله SnO2 آلایش شده با نقره در طراحی، ساخت و افزایش حساسیت حسگر گازی H2S با درنظرگرفتن پرتو فرابنفش و رفتار خود گرمایشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانو فناوری، دانشکده علوم، دانشگاه ارومیه، ارومیه، آذربایجان غربی

2 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه، آذربایجان غربی

3 موسسه تحقیقاتی لیزر و پلاسما، دانشگاه شهید بهشتی، تهران، تهران

چکیده

حسگر گاز H2S با رشد نانومیله­های SnO2 بر یک بستر بهم پیوسته نقره و پوشش چرخشی نانوذرات SnO2 در سطح نانو میله­ها ساخته شد. هندسه، ریخت­شناسی، ترکیب شیمیایی، ویژگی نوری و الکتریکی با استفاده از میکروسکوپ الکترونی روبشی انتشار میدان (FESEM)، طیف­سنجی پرتو ایکس پراکندگی انرژی (EDAX)، پراش پرتو نگاری با پرتو ایکس، طیف­سنجی نور پایه و طیف­سنجی جذب مورد بررسی قرار گرفت. حسگر ساختگی با آلایش نانوذرات SnO2 با نقره و همچنین، با استفاده از روش نوآورانه قرار گرفتن همزمان در معرض پرتو فرابنفش و تعادل الکتریکی (خود گرمایش) تقویت شد. اقدامات ما منجر به تولید یک حسگر بسیار حساس با گستره تشخیص بسیار کم  (500 ppb تا 10 ppm ) شد که در آن برای نخستین بار از تداخل گاز H2O نیز در سنجش گاز استفاده  شد. با توجه به این دستاورد زمان پاسخ حسگر و زمان بهبودی در 10 ppm گاز H2S بطور قابل توجهی به ترتیب از 10 و 11 ثانیه شیوه اولیه به 5 و 8 ثانیه از شیوه اصلاح شده رشد یافته است. حساسیت متقابل حسگر نسبت به C6H6, C2H5OH, CO2و NH3نیز به منظور تعیین انتخابی حسگر مورد بررسی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

The use of Ag doped SnO2 nanorods and nanoparticles in designing, fabrication and sensitivity enhancement of H2S gas sensor considering ultra-violet ray and self-heating

نویسندگان [English]

  • reza Mostafavian Maleki 1
  • asghar Esmaili 1 2
  • reza Taheri Ghahrizjani 3
1
2
3
M. Kaur, B. K. Dadhich, R. Singh et al., “RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature,” Sensors and Actuators B: Chemical, 242, 389-403, 2017.
[2] C.-H. Kwak, H.-S. Woo, and J.-H. Lee, “Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires,” Sensors and Actuators B: Chemical, 204, 231-238, 2014.
[3] Q. Yu, J. Zhu, Z. Xu et al., “Facile synthesis of α-Fe2O3@ SnO2 core–shell heterostructure nanotubes for high performance gas sensors,” Sensors and Actuators B: Chemical, 213, 27-34, 2015.
[4] V. K. Tomer, S. Devi, R. Malik et al., “Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids,” Sensors and Actuators B: Chemical, 229, 321-330, 2016.
[5] D. R. Miller, S. A. Akbar, and P. A. Morris, “Nanoscale metal oxide-based heterojunctions for
88
پاییز 1399 | شماره 3 |سال هقتم
gas sensing: a review,” Sensors and Actuators B: Chemical, 204, 250-272, 2014.
[6] H. Xu, D. Ju, W. Li et al., “Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film,” Sensors and Actuators B: Chemical, 224, 654-660, 2016.
[7] C.A. Betty, S. Choudhury, and S. Arora, “Tin oxide–polyaniline heterostructure sensors for highly sensitive and selective detection of toxic gases at room temperature,” Sensors and Actuators B: Chemical, 220, 288-294, 2015.
[8] C.-S. Lee, J.-H. Choi, and Y.H. Park, “Development of metal-loaded mixed metal oxides gas sensors for the detection of lethal gases,” Journal of Industrial and Engineering Chemistry, 29, 321-329, 2015.
[9] Q. Wang, C. Wang, H. Sun et al., “Microwave assisted synthesis of hierarchical Pd/SnO2 nanostructures for CO gas sensor,” Sensors and Actuators B: Chemical, 222, 257-263, 2016.
[10] S. Nicoletti, L. Dori, G. Cardinali et al., “Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped SnO2 thin sensing films deposited by the pulsed laser ablation,” Sensors and Actuators B: Chemical, 60, 2-3, 90-96, 1999.
[11] A. Cabot, J. Arbiol, J.R. Morante et al., “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sensors and Actuators B: Chemical, 70, 1-3, 87-100, 2000.
[12] K.-Y. Pan, Y.-H. Lin, P.-S. Lee et al., “Synthesis of SnO 2-ZnO core-shell nanowires and their optoelectronic properties,” Journal of Nanomaterials, 2012, 6, 2012.
[13] I.S. Hwang, S.J. Kim, J.-K. Choi et al., “Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires,” Sensors and Actuators B: Chemical, 148, 2, 595-600, 2010.
[14] S. Niu, Y. Hu, X. Wen et al., “Enhanced performance of flexible ZnO nanowire based room‐temperature oxygen sensors by Piezotronic effect,” Advanced materials, 25, 27, 3701-3706, 2013.
[15] S. Mishra, C. Ghanshyam, N. Ram et al., “Detection mechanism of metal oxide gas sensor under UV radiation,” Sensors and Actuators B: Chemical, 97, 2-3, 387-390, 2004.
[16] L. F. da Silva, J.-C. M’Peko, A.C. Catto et al., “UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature,” Sensors and Actuators B: Chemical, 240, 573-579, 2017.
[17] J. Gong, Y. Li, X. Chai et al., “UV-light-activated ZnO fibers for organic gas sensing at room temperature,” The Journal of Physical Chemistry C,. 114, 2, 1293-1298, 2009.
[18] J. Saura, “Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation,” Sensors and Actuators B: Chemical, 17, 3, 211-214, 1994.
[19] T. Hyodo, K. Urata, K. Kamada et al., “Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation,” Sensors and Actuators B: Chemical, 253, 630-640, 2017.
[20] G. Korotcenkov, and B. Cho, “Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 1: improvement of sensor sensitivity and selectivity,” Sensors Actuators B, 188, 709-728, 2013.
[21] A. Kar, S. Kundu, and A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” The Journal of Physical Chemistry C, 115, 1, 118-124, 2010.
[22] N. Barsan, M. Schweizer-Berberich, and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report,” Fresenius' journal of analytical chemistry, 365, 4, 287-304, 1999.
[23] J. Kaur, V. Vankar, and M. Bhatnagar, “Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin films,” Sensors and Actuators B: Chemical, 133, 2, 650-655, 2008.
[24] P. S. Kolhe, P.M. Koinkar, N. Maiti et al., “Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties,” Physica B: Condensed Matter, 524, 90-96, 2017.
[25] T. Sinha, M. Ahmaruzzaman, P.P. Adhikari et al., “Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent,” ACS Sustainable Chemistry & Engineering, 5, 6, 4645-4655, 2017.
[26] S. Luo, J. Fan, W. Liu et al., “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology, 17,. 6, 1695, 2006.
[27] H. Chen, S. Xiong, X. Wu et al., “Tin oxide nanoribbons with vacancy structures in luminescence-sensitive oxygen sensing,” Nano letters, 9, 5, 1926-1931, 2009.
[28] Y. Li, W. Yin, R. Deng et al., “Realizing a SnO 2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Materials, vol. 4, 11, 30-45, 2012.
[29] M. Z. Ansari, and C. Cho, “An analytical model of joule heating in piezoresistive microcantilevers,” Sensors, vol. 10, no. 11, pp. 9668-9686, 2010.
[30] T.M. Ngoc, N. Van Duy, C.M. Hung et al., “Ultralow power consumption gas sensor based on a self-heated nanojunction of SnO 2 nanowires,” RSC advances, 8, 63, 36323-36330, 2018.
[31] J.-Y. Kim, J.-H. Lee, J.H. Kim et al., “Realization of H2S sensing by Pd-functionalized networked CuO nanowires in self-heating mode,” Sensors and Actuators B: Chemical, 299, 126965, 2019.
[32] T. M. Ngoc, N. Van Duy, C. M. Hung et al., “Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual
89
پاییز 1399 | شماره 3 |سال هقتم
multisensor for H2S-selective sensing,” Analytica chimica acta, 1069, 108-116, 2019.
[33] N. Van Hieu, P. Thi Hong Van, L. Tien Nhan et al., “Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles,” Applied Physics Letters, 101, 25, 253106, 2012.
[34] J.-H. Kim, A. Mirzaei, H. W. Kim et al., “Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires,” Sensors and Actuators B: Chemical, 267,. 597-607, 2018.
[35] M. Reddeppa, B.G. Park, M.D. Kim et al., “H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination,” Sensors and Actuators B: Chemical, 264, 353-362, 2018.
[36] E. Comini, A. Cristalli, G. Faglia et al., “Light enhanced gas sensing properties of indium oxide and tin dioxide sensors,” Sensors and Actuators B: Chemical, vol. 65, no. 1-3, pp. 260-263, 2000.
[37] J. D. Prades, R. Jiménez-Díaz, F. Hernandez-Ramirez et al., “Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires,” Sensors and Actuators B: Chemical, 140, 2, 337-341, 2009.
[38] J. Zhai, L. Wang, D. Wang et al., “UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres,” Sensors and Actuators B: Chemical, 161, 1, 292-297, 2012.