بلور فوتونی یک بعدی تشدیدی مبتنی بر نقاط کوانتومی InAs/InGaAs : ساختاری با پاسخدهی تنظیم پذیر برای کاربردهای مخابرات نوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه، گروه مهندسی اپتیک و لیزر، دانشگاه صنعتی ارومیه، ارومیه

2 دانشکده فیزیک، دانشگاه تبریز، تبریز

چکیده

در این مقاله، دو ساختار بلور فوتونی تشدیدی پیشنهاد میشود که پاسخ نوری آنها افزون بر مدولاسیون تابع دی الکتریک در
بلور، وابسته به اندرکنش تحریکهای درونی با امواج تابیده به ساختار است. لایههای متناوب GaAs )به عنوان لایه سد( و نقاط
کوانتومی InAs/InGaAs )لایه دوقطبی فعال( بهعنوان بلوکهای اصلی تشکیل دهنده بلورها انتخاب شدهاند. نظم بلوری ساختارها
با وارد کردن لایههای نقص عمدی بهم ریخته شده است. روش ماتریس انتقال برای بررسی مشخصههای نوری بلورها مورد استفاده
قرار گرفته و به منظور مدلبندی شرایط واقعی، نقش پذیرفتاری موثر اکسایتونی و عوامل پهن شدگیهای همگن و ناهمگن نیز لحاظ
شده که در مطالعات پیشین بسیار کمتر مورد توجه بودهاند. وابستگی پاسخ دهی نمونه ها )چه از پهنا و گستره طول موجی ناحیه باند
توقف و مدهای تشدیدی( به پارامترهای ساختاری همچون تعداد لایههای تناوبی، ضخامت لایههای سد و نقطه کوانتومی و همچنین،
مقدار همگن بودن لایهها در گام اول مورد بررسی قرار میگیرد. پس از استخراج مقادیر بهینه، تنظیم پذیری مشخصههای نوری با
عوامل خارجی همچون دمای بلور و زاویه تابش نور به آن بصورت منسجم بررسی میشوند. نتایج نشانگر پتانسیل بالای ساختارهای
پیشنهادی برای کاربردهایی همچون فیلترها، تفکیک کننده های فرکانسی و سویچهای تمام نوری تنظیم پذیر هستند.

کلیدواژه‌ها


عنوان مقاله [English]

One dimensional resonant photonic crystal based on InAs/InGaAs quantum dots; structure with tunable response for optical communication applications

نویسندگان [English]

  • sepehr Razi 1
  • Fatemeh Ghasemi 2
  • Samad Roshan Entezar 2
1 Urmia (UUT), Technology of University Urmia group, engineering laser and Optics
2 Department of Tabriz University, Tabriz Physics,
چکیده [English]

In this paper two resonant photonic crystals is proposed that their optical response depends not only to the modulation of the dielectric function but also to the interaction of the incident light with the crystal's internal excitations. Alternating layers made of GaAs (as the barrier layer) and InAs/InGaAs quantum dots (dipole active layer) are selected as the main building blocks of the crystals. Structural order is disturbed by adding defects. Transfer Matrix Method (TMM) is applied to evaluate the optical features of the crystals and in order to model the real situation, the roles of the effective exitonic susceptibility besides the homogenous and non-homogenous broadenings are considered in calculations. Dependence of the structures response (including width and wavelength range of the stop band and resonant modes) to the structural parameters such as layers period number, size of the slabs and homogeneity of the layers are studied at the first step. Extracting the optimum values, tunability of the optical features with external parameters such as crystal temperature and light incident angle is explored systematically. Results clearly show the great potential of the proposed crystals for applications such as all optical tunable filters, frequency dividers and switches.

کلیدواژه‌ها [English]

  • resonant photonic crystals
  • defective structure
  • stop band
  • transfer matrix
  • tunable optical response
[1] S. John, “Strong localization of photons in certain disordered dielectric superlattice,” Phys. Rev. Lett. 58, 1987.
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 1987.
[3] S. Razi, F. Ghasemi, “Tunable photonic crystal wavelength sampler with response in terahertz frequency range,” Optical and Quantum Electronics 51, 104, 2019.
[4] A. Rashidi, A. Namdar, A. Hatef, “Magnetic field induced enhanced absorption using a gated graphene/1D photonic crystal hybrid structure: Quantum regime,” Optical Materials, 83, 73-77 2018.
[5] S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady, “Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of seawater salinity sensing,” Optical and Quantum Electronics, 51, 97.
[6] K. Jamshidi-Ghaleh, R. Karimzadeh, “Possibility of optical spectral singularity in scattering spectrums of 1D multilayer structure,” Optik, 178, 8-13, 2019.
[7] P. and R. V. Nair, “Scaling the spatial fluctuation of spontaneous emission suppression in photonic crystals,” Optics Letters 44, 2811-2814, 2019.
[8] M. K. Moghaddam, R. Fleury, “Slow light engineering in resonant photonic crystal line-defect waveguides,” Opt Express. 27, 26229-2623, 2019.
[9] D. Nobahar, K. Hajisharifi, H. Mehdian, “Twisted beam shaping by plasma photonic crystal,” Journal of Applied Physics 124, 213102, 2018.
[10] F. Ghasemi, S.R. Entezar, S. Razi, “Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer,” Laser Physics 29, 056201, 2019.
[11] Z. Arefinia, A. Asgari, “Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals, for terahertz applications,” Physica E, 54, 34–39, 2013.
[12] A. Ghasempour Ardakani, F. Bahmani Firoozi, “Highly tunable bistability using an external magnetic field in photonic crystals containing graphene and magnetooptical layers,” journal of applied physics, 121, 023105, 2017.
[13] S. Razi, F. Ghasemi, “Broad band temperature independent photonic crystal based optical filter with response in visible wavelength range,” Laser Physics 29, 046204, 2019.
[14] C. Pina-Hernandez, A. Koshelev, S. Dhuey, S. Sassolini, M. Sainato, S. Cabrini, K. Munechika1, “Nanoimprinted High-Refractive Index Active Photonic Nanostructures Based on
47
Quantum Dots for Visible Light.” Scientific Reports, 7, 17645, 2017.
[15] T. Wang, G. Li, Zh. Chen, “The theoretical investigation of all-optical polarization switching based on InGaAs(P) Bragg-spaced quantum wells,” Opt. Exp. 16, 127, 2008.
[16] M.V. Erementchouk, L.I. Deych, A. A. Lisyansky, “Spectral properties of exciton polaritons in one-dimensional resonant photonic crystals,” Phys. Rev. B, 73, 115321, 2006.
[17] L.I. Deych, M.V. Erementchouk, A.A. Lisyansky, “Effects of inhomogeneous broadening on reflection spectra of Bragg multiple quantum well structures with a defect,” Phys. Rev. B, 69, 075308, 2004.
[18] L. I. Deych, A. Yamilov, A. A. Lisyansky, “Optical spectra and inhomogeneous broadening in CdTe/CdZnTe MQW structures with defects,” Nanotechnology, 13, 114, 2000.
[19] Zh. Hu, B. Xiang, Y. Xing, “Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal,” Opt. Mater. 62, 419-423, 2016.
[20] J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially grown InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys,100, 063101, 2006.
[21] F. Ghasemi, S.R. Entezar, S. Razi, “Graphene based photonic crystal optical filter: Design and exploration of the tunability,” Physics Letters A 383, 2551-2560, 2019.
[22] S. Razi, F. Ghasemi, “Tunable graphene based one dimensional photonic crystal with applications in terahertz optical integrated circuits,” Physica B: Condensed Matter, 566, 77-85, 2019.
[23] S. Razi, F. Ghasemi, “One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range,” Chin. Phys. B. 28, 124205, 2019.
[24] J.J. Finley, M. Sabathil, P. Vogl, G. Abstreiter, R. Oulton, A. I. Tartakovskii, D. J. Mowbray, M. S. Skolnick, S. L. Liew , A.G. Cullis, M. Hopkinson, “Quantum-confined Stark shifts of charged exciton complexes in quantum dots,” Phys. Rev. B, 70, 201308- 1–201308-4, 2014.
[25] T.M. Hsu, W.H. Chang, C.C. Huang, N.T. Yeh, J. I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett. 78, 1760–1762, 2001.
[26] V.I. Puller, L.I. Deych, M.V. Erementchouk, A. A. Lisyansky, “Screening of external electric field by photoinduced carriers in Bragg multiple quantum wells. Appl. Phys. Lett. 87, 052104-1–052104-3, 2005.
[27] A. Asgari, S. Razi, “High performances III-Nitride Quantum Dot infrared photodetector operating at room temperature,” Optics express, 18, 14604, 2010.