تهیه نانو ساختار کلینوپتیلولیت از سنگ معدن این زئولیت و استفاده از آن برای حذف آلاینده مس از آب

نویسندگان

دانشکده شیمی، دانشگاه خوارزمی، تهران

چکیده

در این کار پژوهشی نانوساختارهای کلینوپتیلولیت از سنگ معدن این زئولیت طبیعی تهیه و جهت حذف یون مس II از محلول‌ آبی آلوده به آن استفاده شد. در مرحله اول ذرات کلینوپتیلولیت طبیعی توسط دستگاه آسیاب گلوله‎ای به نانوساختارهای مربوطه تبدیل شدند. مشخصات این زئولیت طبیعی و نمونه‏های نانوساختار بدست آمده از آن با استفاده از SEM، BETو XRD بررسی شدند. تصویر SEM تولید نانو ساختارهای کلینوپتیلولیت را تایید کرد. داده‎های به‌دست‌آمده از آنالیز جذب-واجذبی نیتروژن حاکی از افزایش تخلخل نانوساختارهای کلینوپتیلولیت نسبت به میکروذرات سنگ معدن مربوطه بود. درقسمت دوم این پروژه از نانوساختارهای تهیه شده به‌عنوان جاذب در فرآیند حذف یون مس II از آب آلوده شده استفاده گردید. تأثیر عوامل محیطی مانند pH اولیه محلول، غلظت جاذب، غلظت آلاینده و زمان تماس بر راندمان حذف مس II از محلول بررسی گردید. همچنین مدل ایزوترمی و مدل سینتیکی فرآیند حذف مس مورد بررسی قرار گرفت که مدل لانگمویر تطابق بیشتری با فرآیند جذب سطحی مورد نظر داشت و فرآیند از مدل سینتیکی شبه درجه دوم پیروی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of Clinoptilolite Nanostructure from this Zeolite ore and its Application in Copper Ions Removal from Water

نویسندگان [English]

  • M. Sheidaei
  • A. Balanejad Gasemsoltanlu
  • A. Beiraghi
چکیده [English]

In this work, natural clinoptilolite nanaostructures were prepared from natural zeolite and used to remove Cu2 cation from polluted water. In the first section the natural clinoptilolite particles were converted to nanostructures using a ball mill. The natural clinoptilolite and prepared nanostructures samples were characterized by SEM, XRD, and BET. The SEM images approved the development of clinoptilolite nanostructures. The result obtained from BET analysis indicated the increase pore volume of clinoptilolite nanostructures related to the clinoptilolite microparticles. In the second part of this work, the nanostructures were used as adsorbent for removal of Cu2 cation from polluted water. Effect of initial pH of solution, adsorbent dosage and contact time on the Cu2 removal efficiency was investigated, where the 6, 1.2 g/L and 6 were determined as optimum conditions, respectively. Isotherm and kinetics of the adsorption process were analyzed. The equilibrium data were fitted well to the Langmuir isotherm model and pseudo-second-order kinetic model.

کلیدواژه‌ها [English]

  • Mechanical method
  • Natural Clinoptilolite nanostructures
  • Copper (II) ions
  • Natural zeolite
  • Flame atomic absorption spectroscopy
[1] S. Aber, D. Salari, B. Ayoubi Feiz, "The sorption of copper on almond shell: optimization and kinetics," Water Science & Technology, 63, 1389-1395, 2011.
[2] T. A. Saleh, Advanced Nanomaterials for Water Engineering, Treatment, and Hydraulics, IGI Global, 2017.
[3] A. Da̧ browski, Z. Hubicki, P. Podkościelny, E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, 56, 91-106, 2004.
[4] E. Cséfalvay, V. Pauer, P. Mizsey, "Recovery of copper from process waters by nanofiltration and reverse osmosis," Desalination, 240, 132-142, 2009.
[5] S.O. Adio, M. H. Omar, M. Asif, T.A. Saleh, "Arsenic and Selenium removal from water using Biosynthesized Nanoscale zero-valent iron: a factorial design analysis," Process Safety and Environmental Protection, 107, 518-527, 2017.
[6] T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, "Separation of copper ions by electrodialysis using Taguchi experimental design," Desalination, 169, 21-31, 2004.
[7] S. Aber, B. Ayoubi-Feiz, D. Salari, "Investigation of Isothermal and Fixed-Bed Column Sorption of Cu(II) onto Almond Shell," Environmental Engineering and Management Journal, 12 435-441, 2013.
[8] P. Sarma, R. Kumar, K. Pakshirajan, "Batch and Continuous Removal of Copper and Lead from Aqueous Solution using Cheaply Available Agricultural Waste Materials," International Journal of Environmental Research, 9, 635-648, 2015.

[9] D. Georgiev, B. Bogdanov, K. Angelova, I. Markovska, Y. Hristov, Synthetic zeolites–structure, classification, current trends in zeolite synthesis. Review, in: International Science Conference, 2009, pp. 4-5.06.

[10] A. Nezamzadeh-Ejhieh, S. Khorsandi, "Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite," Journal of Industrial and Engineering Chemistry, 20, 937-946, 2014.

[11] S. Yaşyerli, I. Ar, G. Doğu, T. Doğu, "Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber," Chemical Engineering and Processing: Process Intensification, 41, 785-792, 2002.

[12] M. Kruk, M. Jaroniec, "Gas adsorption characterization of ordered organic- inorganic nanocomposite materials," Chemistry of Materials, 13, 3169-3183, 2001.

[13] H. A. Sani, M. B. Ahmad, M. Z. Hussein, N.A. Ibrahim, A. Musa, T.A. Saleh, "Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions," Process Safety and Environmental Protection, 109, 97-105, 2017.

[14] G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, S. Amirmahmoodi, A. Ghafari-Nazari, "Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon, Journal of Hazardous Materials, 192, 1046-1055, 2011.

[15] S. Aber, M. Sheydaei, "Removal of COD from industrial effluent containing indigo dye using adsorption method by activated carbon cloth: Environmental Engineering and Management Journal, 12 435-441, 2013.

[8] P. Sarma, R. Kumar, K. Pakshirajan, "Batch and Continuous Removal of Copper and Lead from Aqueous Solution using Cheaply Available Agricultural Waste Materials," International Journal of Environmental Research, 9, 635-648, 2015.

[9] D. Georgiev, B. Bogdanov, K. Angelova, I. Markovska, Y. Hristov, Synthetic zeolites–structure, classification, current trends in zeolite synthesis. Review, in: International Science Conference, 2009, pp. 4-5.06.
[10] A. Nezamzadeh-Ejhieh, S. Khorsandi, "Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite," Journal of Industrial and Engineering Chemistry, 20, 937- 946, 2014.
[11] S. Yaşyerli, I. Ar, G. Doğu, T. Doğu, "Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber," Chemical Engineering and Processing: Process Intensification, 41, 785-792, 2002.
[12] M. Kruk, M. Jaroniec, "Gas adsorption characterization of ordered organic- inorganic nanocomposite materials," Chemistry of Materials, 13, 3169-3183, 2001.
[13] H. A. Sani, M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, A. Musa, T.A. Saleh, "Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions," Process Safety and Environmental Protection, 109, 97-105, 2017.
[14] G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, S. Amirmahmoodi, A. Ghafari-Nazari, "Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon, Journal of Hazardous Materials, 192, 1046-1055, 2011.
[15] S. Aber, M. Sheydaei, "Removal of COD from industrial effluent containing indigo dye using adsorption method by activated carbon cloth:Optimization, kinetic, and isotherm studies," Clean
– Soil, Air, Water, 40, 87-94, 2012.
[16] F.Z. Mahjoubi, A. Khalidi, M. Abdennouri, N. Barka, "Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties," Journal of Taibah University for Science, 11, 90-100, 2017.
[17] M. Sprynskyy, B. Buszewski, A. P. Terzyk, J.Namiesnik, "Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite," Journal of Colloid and Interface Science, 304, 21-28, 2006.
[18] M. Irannajad, H. K. Haghighi, E. Safarzadeh,"Kinetic, thermodynamic and equilibrium studies on the removal of copper ions from aqueous solutions by natural and modified clinoptilolites," Korean Journal of Chemical Engineering, 33,1629-1639, 2016.

[19] H. Y. Wang, H.F. Huang, "Competitive Adsorption of Lead, Copper and Zinc Ions on Polymeric Al/Fe Modified Clinoptilolite," Advanced Materials Research, 156-157, 900-907,2010.