مطالعه حسگر گازی مبتنی بر فسفرین با استفاده از اصول اولیه

نویسندگان

الکترونیک، دانشکده مهندسی برق و کامپیوتر، پردیس دانشکده های فنی، دانشگاه تهران، تهران

چکیده

در این پژوهش، با استفاده از محاسبات مبتنی بر نظریه تابع چگالی، جذب مولکولهای گاز ،NH، CO3 ،H2Sو
NOبر روی فسفرین مورد مطالعه قرار میگیرد. مکانهای بهینهی جذب هر یک از گازها و مکانیزم حس گازها توسط
لایهی دو بعدی شناسایی می شود. هرچه انتقال بار بیشتری بین مولکول و فسفرین اتفاق بیفتد، مقاومت لایه نیز تغییر
بیشتری می کند و لذا با محاسبهی تغییرات مقاومت می توان گازها را تشخیص داد و غلظت آنها را بدست آورد. نتایج
نشان می دهند که فسفرین بیشترین حساسیت را به گازهای مبتنی بر اتم Nو بخصوص مولکول گاز NOدارد. بمنظور
بهبود عملکرد حسگر فسفرین، به مطالعهی نقش کرنش در عملکرد حسگری آن پرداخته شد. مکانهای بهینهی جذب
هر یک از گازها در کرنشهای مختلف بدست آمد و مکانیزم تغییرات انرژی جذب گازها در اثر اعمال کرنش شناسایی
شد. نتایج تاثیر اعمال کرنش نشان میدهند که اعمال کرنش به تکلایه، قابلیت تفکیک گازها را بهبود می بخشد. در
نهایت می توان گفت که عملکرد حسگر گازی فسفرین بدون کرنش و همچنین تحت کرنش قابل قبول است و توانایی
بالقوهای در تفکیک گازها دارد

کلیدواژه‌ها


عنوان مقاله [English]

A First-Principle Study of Phosphorene-based Gas Sensors

نویسندگان [English]

  • S. M.S. Seyyedi
  • M. Roshankar
  • M. Pourfath
چکیده [English]

Two-dimensional materials have been the focus of research activities over the past decade.
Their interesting and unique properties render them as excellent candidates for future electronic,
optoelectronic, sensing, and bio applications. For gas sensing it is essential to maximize the ratio of the
surface to volume of the sensor, which is the case for two-dimensional materials. This work presents a
comprehensive study on adsorption properties of H2S, NH3, CO, and NO on phosphorene, by employing firstprinciple calculations. The optimized atomic sites, directions and the associated adsorption mechanisms are carefully analyzed. Transfer of charge between the gas molecule and the layer modifies the layer’s resistance. By evaluating the resistance variation, the concentration of gas molecules can be determined. The results indicate that nitrogen-based molecules especially NO, show the highest sensitivity among the studied gases. In addition, strain effects on sensor characteristics and adsorption behavior are investigated. The optimal locations for the absorption of the gases and the mechanism of absorption energy under various strain conditions are analyzed. The results indicate that sensitivity increases with strain and significantly improves the selectivity of the sensor. The results show that both strained and unstrained phosphorene are suitable candidates for sensitive gas sensing applications.

کلیدواژه‌ها [English]

  • Two-dimensional materials
  • Phosphorene
  • Gas sensor
  • Density functional theory calculations
  • Strain
[1] K. Novoselov, A. Geim, S. Morozov, D. Jiang,
Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov,
“Electric field effect in atomically thin carbon
films,” Science, 306, 666–669, 2004.
[2] G. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J.
Cha, S. Das, D. Xiao, Y. Son, M. Strano, V.
Cooper, L. Liang, “Recent advances in twodimensional materials beyond graphene,” ACS
Nano, 9, 11509–11539, 2015.
[3] J. Dai, M. Li, X. C. Zeng, “Group IVB
transition metal trichalcogenides: a new class of
2D layered materials beyond graphene,” Wiley
Interdisciplinary Reviews: Computational
Molecular Science, 6, 211–222, 2016.

[4] D. Golberg, Y. Bando, Y. Huang, T. Terao, M.
Mitome, C. Tang, C. Zhi, “Boron nitride nanotubes
and nanosheets,” ACS nano, 4, 2979–2993, 2010.
[5] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F.
Heinz, “Atomically thin MoS2: a new direct-gap
semiconductor,” Physical review letters, 105,
136805, 2010.
[6] L. Kou, T. Frauenheim, C. Chen, “Phosphorene
as a superior gas sensor: selective adsorption and
distinct I–V response,” J. Phys. Chem. Lett, 5,
2675–2681, 2014.
[7] K. Novoselov, A. Mishchenko, A. Carvalho, A.
Neto, “2D materials and van der Waals
heterostructures,” Science, 353, aac9439, 2016.
[8] T. Das, J. H. Ahn, “Development of electronic
devices based on two-dimensional materials,”
FlatChem, 3, 43–63, 2017.
[9] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N.
Coleman, M. S. Strano, “Electronics and
optoelectronics of two-dimensional transition metal
dichalcogenides,” Nature nanotechnology, 7, 699,
2012.
[10] G. Neri, “Thin 2D: the new dimensionality in
gas sensing,” Chemosensors, 5, 21, 2017.
[11] J. Sun, H. W. Lee, M. Pasta, H. Yuan, G.
Zheng, Y. Sun, Y. Li, Y. A. Cui, “Phosphorene–
graphene hybrid material as a high-capacity anode
for sodium-ion batteries,” Nature nanotechnology,
10, 980, 2015.
[12] S. Han, R. Bhatia, S. Kim, “Synthesis,
properties and potential applications of twodimensional transition metal dichalcogenides,”
Nano Convergence, 2, 17, 2015.
[13] E. Reich, “Phosphorene excites materials
scientists,” Nature, 506, 19, 2014.
[14] H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D.
Tománek, P.Ye, “Phosphorene: an unexplored 2D
semiconductor with a high hole mobility,” ACS
nano, 8, 4033–4041, 2014.
[15] S. Cui, H. Pu, S. Wells, Z. Wen, S. Mao, J.
Chang, M. Hersam, J. Chen, “Ultrahigh sensitivity
and layer-dependent sensing performance of
phosphorene-based gas sensors,” Nature
communications, 6, 8632, 2015.
[16] L. Yang, A. Charnas, G. Qiu, Y. M. Lin, C. C.
Lu, W. Tsai, Q. Paduano, M. Snure, P. D. Ye,
“How important is the metal–semiconductor
contact for Schottky barrier transistors: a case
study on few-layer black phosphorus?,” ACS
Omega, 2, 4173–4179, 2017.
[17] W. Zhu, M. N. Yogeesh, S. Yang, S. H.
Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, D.
Akinwande, “Flexible black phosphorus ambipolar
transistors, circuits and AM demodulator,” Nano
letters, 15, 1883–1890, 2015.
[18] Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y.
Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, P.
D. Ye, “Black phosphorus–monolayer MoS2 van
der Waals heterojunction p–n diode,” ACS nano, 8,
8292–8299, 2014.
[19] J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka,
L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z.
Liu, M. H. Rummeli, “Applications of
phosphorene and black phosphorus in energy
conversion and storage devices,” Advanced Energy
Materials, 8, 1702093, 2018.
[20] S. Li, T. Wang, X. Chen, W. Lu, Y. Xie, Y. Hu, “Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity
and suppressed dark current,” Nanoscale, 10,
7694–7701, 2018.
[21] D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu,
J. Navarrete, M. Moskovits, K Banerjee,
“Functionalization of transition metal
dichalcogenides with metallic nanoparticles:
implications for doping and gas-sensing,” Nano
letters, 15, 2852–2862, 2015.
[22] Y. Yong, X. Su, H. Cui, Q. Zhou, Y. Kuang,
X. Li, “Two-Dimensional Tetragonal GaN as
Potential Molecule Sensors for NO and NO2
Detection: A First-Principle Study,” ACS Omega,
2, 8888–8895, 2017.
[23] K. Milowska, J. Majewski, “Graphene-based
sensors: theoretical study,” The Journal of Physical
Chemistry C, 118, 17395–17401, 2014.
[24] F. Schedin, A. Geim, S. Morozov, E. Hill, P.
Blake, M. Katsnelson, K. Novoselov, “Detection of
individual gas molecules adsorbed on graphene,”
Nature materials, 6, 652, 2007.
[25] B. Cho, M. Hahm, M. Choi, J. Yoon, A. Kim,
Y. Lee, S. Park, J. Kwon, C. Kim, M. Song, Y.
Jeong, “Charge-transfer-based gas sensing using
atomic-layer MoS2,” Scientific reports, 5, 8052,
2015.
[26] J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, T. Lee,
“A highly sensitive hydrogen sensor with gas
selectivity using a PMMA membrane-coated Pd
nanoparticle/single-layer graphene hybrid,” ACS
applied materials & interfaces, 7, 3554–3561,
2015.
[27] B. Liu, L. Chen, G. Liu, A. Abbas, M. Fathi,
C. Zhou, “High-performance chemical sensing
using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors”
ACS nano, 8, 5304–5314, 2014.
[28] Y. Li, S. Yang, J. Li, “Modulation of the
electronic properties of ultrathin black phosphorus
by strain and electrical field,” The Journal of
Physical Chemistry C, 118, 23970–23976, 2014.
[29] N. Elahi, K. Khaliji, S. Tabatabaei, M.
Pourfath, R. Asgari, “Modulation of electronic and
mechanical properties of phosphorene through
strain,” Physical Review B, 91, 115412, 2015.
[30] G. Kresse, J. Furthmüller, “Efficient iterative
schemes for ab initio total-energy calculations
using a plane-wave basis set,” Physical review B,
54, 11169, 1996.
[31] S. Grimme, “Semiempirical GGA-type
density functional constructed with a long-range
dispersion correction,” Journal of computational
chemistry, 27, 1787–1799, 2006.
[32] W. Tang, E. Sanville, G. Henkelman, “gridbased Bader analysis algorithm without lattice
bias,” Journal of Physics: Condensed Matter, 21,
084204, 2009.
[33] X. Peng, Q. Wei, A. Copple, “Strainengineered direct-indirect band gap transition and
its mechanism in two-dimensional phosphorene,”
Phys. Rev. B, 90, 85402, 2014.