اثر شرایط ساخت بر ساختار بلوری و مورفولوژی نانوساختارهای هیبریدی نانولوله کربنی- اکسید روی

نویسندگان

1 گروه فیزیک حالت جامد، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران

2 آزمایشگاه تحقیقاتی نانوساختارهای کربن پایه، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران

3 گروه شیمی تجزیه، دانشکده شیمی، دانشگاه مازندران، بابلسر، مازندران

چکیده

در این پژوهش نانو مواد هیبریدی نانولوله کربنی چند دیواره- اکسید رویMWCNT-ZnO به روش سل-ژل پلی یولی با استفاده از استات روی دوآبه ZnCH3COO2.2H2O و نانولوله کربنی عاملدار با گروه کربوکسیلCOOH و دو نوع حلال دی اتیلن گلیکول و گلیسیرین ساخته و تاثیر سه پارامتر نوع حلال، pH محیط و میزان آب افزودنی بر محصول نهایی بررسی شد. تمامی نانو مواد تهیه شده به وسیله آنالیزهای میکروسکوپ الکترونی روبشی گسیل میدانیFESEM، میکروسکوپ الکترونی عبوریTEM، طیف‌سنجی تبدیل فوریه مادون قرمزFTIR، طیف‌سنجی تفکیک انرژی پرتو ایکسEDX و پراش اشعه ایکسXRD مشخصه‌یابی شدند .در ساخت MWCNT-ZnO با استفاده از حلال دی اتیلن گلیکول مشاهده شد که با افزایش pH محلول، اندازه نانوذرات اکسید روی پوشش داده شده روی سطح نانولوله کربنی در ساختارهای هیبریدی بشدت کاهش و تعداد آن‌ها افزایش و پوشش یکنواخت‌تری ایجاد می‌شود. با تغییر حلال و استفاده از گلیسیرین در ساخت هیبرید مورفولوژی جدیدی شکل گرفته و اکسید روی بصورت نانوصفحات و نانوقطعات کریستالی تقریباً شش ضلعی به بدنه نانولوله های کربنی متصل می‌شود. با افزایش میزان آب دیونیزه حاضر در واکنش، فرآیند هیدرولیز افزایش یافته و اکسید روی بیشتری روی نانولوله‌ها نشست می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Synthesis Parameters on Crystal Structure and Morphology of CNT-ZnO Hybrid Nanostructures

نویسندگان [English]

  • Y. Ranjbar Donchali 1
  • M. Akbarzadeh Pasha 1 2
  • M.J. Chaeichi 3
1
2
3
چکیده [English]

In this research, Carbon nanotubes-Zinc oxideCNT-ZnO hybrid nanomaterial was prepared by a polyol sol-gel method using zinc acetate ZnCH3COO2.H2O, functionalized CNT with carboxyl COOH group and two kind of solvent; diethylene glycolDEG and glycerolGLY and the effect of three synthesis parameter: kind of solvent, pH of solution and amount of additive water on properties of end-product hybrid was investigated. The synthesized nanomaterials were characterized by field emission scanning electron microscopy FESEM, Transmission electron microscopyTEM, Fourier transform infrared spectroscopy FTIR, energy dispersive X ray spectroscopy EDX and X ray diffraction XRD. In synthesis of hybrid structures using diethylene glycol, it was found that by increasing the PH of solution, the average size of ZnO nanoparticles deposited on CNT surfaces dramatically decreases and the number of them increases. Furthermore by increasing the PH of solution the uniformity of ZnO deposition was considerably improved. By changing the solvent and using glycerol a new morphology of hybrid structure was obtained and zinc oxide in form of nanosheets and hexagonal nanocrystal segments attached to the body of CNTs. By increasing the amount of deionized water, hydrolysis reaction and thus deposition of ZnO on CNTs’ body increases.

کلیدواژه‌ها [English]

  • CNT-ZnO
  • Hybrid structure
  • Polyol sol-gel
  • pH of solution
  • Solvent
[1] S. Iijima, “Helical microtubules of graphitic
carbon,” Nature, 354, 56-58, 1991.
[2] M. Yang, L. Tao, P. Yucai, C. Qing, “Synthesis
and characterization of a nanocomplex of ZnO
nanoparticles attached to carbon nanotubes,” Acta
physico-chimica sinica 23, 145-151, 2007.
[3] D. Eder, “Carbon nanotube- inorganic
hybrids,” Chemical reviews, 110, 1348-1385,
2010 .
[4] V. Georgakilas, K. Kordatos, M. Prato, D. M.
Guldi, M. Holzinger, A. Hirsch, “Organic
functionalization of carbon nanotubes,” Journal of
the American chemical society, 124, 760-761,
2002.
[5] S. Fullam, D. Cottell, H. Rensmo, D.
Fitzmaurice, “Carbon nanotube templated
selfassembly and thermal processing of gold
nanowires,” Advanced materials, 12, 1430-1432,
2000.
[6] Y. P. Sun, W. Huang, Y. Lin, K. Fu, A.
Kitaygorodskiy, L. A. Riddle, Y. J. Yu, D. L.
Carroll, “Soluble dendron-functionalized carbon
nanotubes: preparation, characterization, and
properties,” Chemistry of materials, 13, 2864-2869,
2001.
[7] M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T.
Yanagisawa, T. Hayashi, M. Terrones, M. S.
Dresselhaus, “Selective and efficient impregnation
of metal nanoparticles on cup-stacked-type carbon
nanofibers,” Nano letters, 3, 723-726, 2003 .
[8] W. Q. Han, A. Zettl, “Coating single-walled
carbon nanotubes with tin oxide,” Nano letters 3,
681-683, 2003 .

[9] X. Li, J. Niu, J. Zhang, H. Li, Z. Liu, “Labeling
the defects of single-walled carbon nanotubes
using titanium dioxide nanoparticles,” The Journal
of physical chemistry B, 107, 2453-2458, 2003.
[10] Y. Yu, L. L. Ma, W. Y. Huang, F. P. Du, C.
Y. Jimmy, J. G. Yu, J. B. Wang, P. K. Wong,
“Sonication assisted deposition of Cu2O
nanoparticles on multiwall carbon nanotubes with
polyol process,” Carbon, 43, 670-673, 2005.
[11] Y. Li, J. Ding, J. Chen, C. Xu, B. Wei, J.
Liang, D. Wu, “Preparation of ceria nanoparticles
supported on carbon nanotubes,” Materials
research bulletin, 37, 313-318, 2002 .
[12] F. E. Osterloh, J. S. Martino, H. Hiramatsu, D.
P. Hewitt, “Stringing up the pearls: self-assembly,
optical and electronic properties of CdSe- and Au-
LiMo3Se3 nanoparticle- nanowire composites,”
Nano letters, 3, 125-129, 2003.
[13] X. Wang, B. Xia, X. Zhu, J. Chen, S. Qiu, J.
Li, “Controlled modification of multiwalled carbon
nanotubes with Zno nanostructures,” Journal of
solid state chemistry, 181, 822-827, 2008.
[14] Y. Sakata, M. Azhar Uddin, A. Muto, M.
Imaoka, “Carbon-supported well-dispersed CuZnO catalysts prepared from sawdust impregnated
with [Cu(NO3)2, Zn(NO3)2] solution: catalytic
activity in CO2 hydrogenation to methanol,”
Microporous materials, 9, 183-187, 1997.
[15] C. N. R. Rao, B. C. Satishkumar, A.
Govindaraj, M. Nath, “Nanotubes,”
ChemPhysChem, 2, 78-105, 2001.
[16] Y. Sun, S. R. Wilson, D. I. Schuster, “High
dissolution and strong light emission of carbon
nanotubes in aromatic amine solvents,” Journal of
the American chemical society, 123, 5348-5349,
2001.
[17] V. Subramanian, E. E. Wolf, P. V. Kamat,
“Catalysis with TiO2/gold nanocomposites: effect
of metal particle size on the Fermi level
equilibration,” Journal of the American chemical
society, 126, 4943-4950, 2004 .
[18] L. Jiang, L. Gao, “Fabrication and
characterization of ZnO-coated multi-walled
carbon nanotubes with enhanced photocatalytic activity,” Materials chemistry and physics, 91, 313-
316, 2005.
[19] X. Wang, S. Yao, X. Li, “Solgel preparation
of CNT/ZnO nanocomposite and its photocatalytic
property." Chinese journal of chemistry, 27, 1317-
1320, 2009.
[20] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li,
I. Chen, T. J. Hsueh, C. L. Hsu, “Novel fabrication
of UV photodetector based on ZnO nanowire/pGaN heterojunction,” Chemical physics letters,
476, 69-72, 2009.
[21] E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C.
Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, S.
H. Jeong, “High-performance NO2 gas sensor
based on ZnO nanorod grown by ultrasonic
irradiation,” Sensors and actuators B: chemical,
141, 239-243, 2009.
[22] X. Ren, D. Chen, X. Meng, F. Tang, X. Hou,
D. Han, L. Zhang, “Zinc oxide
nanoparticles/glucose oxidase photoelectronchemical system for the fabrication of biosensor,”
Journal of colloid and interface science, 334, 183-
187, 2009.
[23] A. Umar, A. Al-Hajry, Y. B. Hahn, D. H.
Kim, “Rapid synthesis and dye-sensitized solar cell
applications of hexagonal-shaped ZnO nanorods,”
Electrochimica Acta, 54, 5358-5362, 2009.
[24] O. Akhavan, R. Azimirad, S. Safa,
“Functionalized carbon nanotubes in ZnO thin
films for photoinactivation of bacteria,” Materials
chemistry and physics, 130, 598-602, 2011.
[25] M. Samadi, H. Asghari Shivaee, M. Zanetti,
A. Pourjavadi, A. Moshfegh, “Visible light
photocatalytic activity of novel MWCNT-doped
ZnO electrospun nanofibers,” Journal of molecular
catalysis A: chemical, 329, 42-48, 2012.
[26] S. Y. Bae, H. W. Seo, H. C. Choi, J. Park, J.
Park, “Heterostructures of ZnO nanorods with
various one-dimensional nanostructures,” The
journal of physical chemistry B, 108, 12318-12326,
2004.
[27] Y. W. Koh, M. Lin, C. K. Tan, Y. L. Foo, K.
P. Loh, “Self-assembly and selected area growth of
zinc oxide nanorods on any surface promoted by an aluminum precoat,” The Journal of physical
chemistry B, 108, 11419-11425, 2004.
[28] J. Sun, L. Gao, M. Iwasa, “Noncovalent
attachment of oxide nanoparticles onto carbon
nanotubes using water-in-oil microemulsions,”
Chemical communications, 7, 832-833, 2004.
[29] S. Hosseini Largani, M. Akbarzadeh Pasha,
“The effect of concentration ratio and type of
functional group on synthesis of CNT–ZnO hybrid
nanomaterial by an in situ sol–gel process,”
International nano letters, 7, 25-33, 2017.
[30] C. Li, Z. Jin, H. Chu, Y. Li, “Seed-mediated
growth of ZnO nanorods on multiwalled carbon
nanotubes,” Journal of nanoscience and
nanotechnology, 8, 4441-4446, 2008.
[31] H. Dong, Y. C. Chen, C. Feldmann, “Polyol
synthesis of nanoparticles: status and options
regarding metals, oxides, chalcogenides, and nonmetal elements,” Green chemistry, 17, 4107-4132,
2015.
[32] L. P. Zhu, G. H. Liao, W. Y. Huang, L. L. Ma,
Y. Yang, Y. Yu, S. Y. Fu, “Preparation,
characterization and photocatalytic properties of
ZnO-coated multi-walled carbon nanotubes,”
Materials science and engineering: B, 163, 194-
198, 2009 .
[33] T. A. Saleh, M. A. Gondal, Q. A. Drmosh, Z.
H. Yamani, A. Al-Yamani, “Enhancement in
photocatalytic activity for acetaldehyde removal by
embedding ZnO nano particles on multiwall carbon
nanotubes,” Chemical engineering journal, 166,