بررسی نظری عملکرد نانوساختارSnS2 بعنوان لایه بافر در سلول خورشیدی CuIn1-xGaxSe2 و مقایسه آن با CdS

نویسندگان

1 پژوهشکده علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران

2 دانشکده فیزیک، دانشگاه علم و صنعت، تهران

3 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران

چکیده

در این مقاله، ابتدا سلول خورشیدی CIGSe با نسبت مختلف Ga/Ga In بر اساس داده های تجربی با استفاده از نرم افزار SCAPS مدلسازی شده است. سپس، ترکیب SnS2 بعنوان بافری مناسب جهت حذف ترکیب سمی CdS مطرح شده است. با توجه به نتایج مدلسازی، SnS2 ماده ای بسیار مناسب جهت جایگزینی با ماده سمی CdS می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical Study of the SnS2 Nanostructure Performance as a Buffer Layer in CuIn1-xGaxS(e)2 Solar Cell and its Comparison with CdS

نویسندگان [English]

  • M. Haghighi 1
  • M. Minbashi 2
  • N. Taghavinia 1 3
  • S.M. Mahdavi 1 3
  • A.A Kordbacheh 2
چکیده [English]

In this paper, firstly, the CIGSe solar cell with a different Ga/Ga In ratio was modeled based on experimental data using the SCAPS software. Then, the SnS2 composition was proposed as a suitable buffer for the elimination of toxic CdS compounds. According to the modeling results, SnS2 is a very suitable material for substitution of the toxic CdS.

کلیدواژه‌ها [English]

  • CIGS(e) solar cell
  • SCAPS software
  • Buffer layer
  • SnS2 nanostructure layer
  • Conduction band offset
[1] Lavery, B. W., Kumari, S., Konermann, H., Draper, G. L., Spurgeon, J. and Druffel, T., “Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells,” ACS Appl. Mater. Interfaces 8(13), 8419–8426 (2016).
 
[2] a, Y., Diaz, H.C., Avila, J., Chen, C., Kalappattil, V., Das, R., Phan, M.H., ?ade?, T., Carmelo, J.M., Asensio, M.C. and Batzill, M., “Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary,” Nat. Commun. 8, 14231 (2017).
 
[3] Nam, Junggyu, Yoonmook Kang, Dongho Lee, JungYup Yang, Young?Su Kim, Chan B. Mo, Sungchan Park, and D. K., “Achievement of 17.9% efficiency in 30×30cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfurization after selenization with Cd-free buffer,” Prog. Photovolt Res. Appl. 24(2), 175–182 (2016).
[4] Liu, W., Mitzi, D. B., Yuan, M., Kellock, A. J., Jay Chey, S. and Gunawan, O., “12% Efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process,” Chem. Mater. 22(3), 1010–1014 (2010).
[5] Roedern, B. Von and Bauer, G. H., “Material Requirements for Buffer Layers Used to Obtain Solar Cells with High Open Circuit Voltages,” MRS Online Proceeding Libr. Arch. 557 (1999).
[6] Redinger, A., Mousel, M., Wolter, M. H., Valle, N. and Siebentritt, S., “Influence of S/Se ratio on series resistance and on dominant recombination pathway in Cu2ZnSn(SSe)4 thin film solar cells,” Thin Solid Films 535, 291–295 (2013).
[7] Yan, C., Liu, F., Song, N., Ng, B. K., Stride, J. a., Tadich, A. and Hao, X., “Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4,” Appl. Phys. Lett. 104(17), 173901 (2014).
[8] Burton, L. a, Colombara, D., Abellon, R. D., Grozema, F. C., Peter, L. M., Savenije, T. J., Dennler, G. and Walsh, A., “Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2,” Chem. Mater. 25(24), 4908–4916 (2013).
[9] Voznyi, A., Kosyak, V., Opanasyuk, A., Tirkusova, N., Grase, L. and Medvids, A., “Structural and electrical properties of SnS2 thin films,” Mater. Chem. Phys. 173, 52–61 (2016).
[10] Mondal, C., Ganguly, M., Pal, J., Roy, A., Jana, J. and Pal, T., “Morphology controlled synthesis of SnS2 nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light,” Langmuir 30(Vi), 4157–4164 (2014).
[11] Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A. P., Science, M., Di, V. and Berkeley, L., “Synthesis and Photovoltaic Application of Copper (I) Sulfide Nanocrystals,” NANO Lett. 8(8), 2551–2555 (2008).
[12] Liao, Y., Wang, Y., Yen, Y., Chen, C., Hsieh, D. and Chen, S., “Non-antireflective Scheme for Efficiency Enhancement of Cu(In,Ga)Se2 Nanotip Array Solar Cells,” ACS Nano 7(8), 7318–7329 (2013).
[13] http://www.solar-frontier.com/eng/news/2017/1220_press.html., “Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.9%,” Sol. Front., (2017).
[14] Wu, Z., Xue, Y., Zhang, Y., Li, J. and Chen, T., “SnS2 nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities,” RSC Adv. 5(31), 24640–24648 (2015).
[15] Yu, J., Xu, C., Ma, F., Hu, S., Zhang, Y. and Zhen, L., “Monodisperse SnS2 Nanosheets for High-Performance Photocatalytic Hydrogen Generation,” ACS Appl. Mater. Interfaces 6(24), 22370–22377 (2014).
[16] Radovsky, G., Popovitz-biro, R. and Tenne, R., “Study of Tubular Structures of the Misfit Layered Compound SnS2/SnS,” Chem. Mater. 24(15), 3004–3015 (2012).
[17] Hu, X., Song, G., Li, W., Peng, Y., Jiang, L., Xue, Y., Liu, Q., Chen, Z. and Hu, J., “Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals,” Mater. Res. Bull. 48, 2325–2332 (2013).
[18] Gupta, R. K. and Yakuphanoglu, F., “Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications,” Sol. Energy 86(5), 1539–1545 (2012).
[19] Thangaraju, B. and Kaliannan, P., “Spray Pyrolytic Deposition and Characterization of SnS and SnS2 Thin Films,” J. Phys. D - Appl. Phys. 33(9), 1054–1059 (2000).
[20] Bauer, A., Sharbati, S. and Powalla, M., “Systematic survey of suitable buffer and high resistive window layer materials in CuIn1?xGaxSe2 solar cells by numerical simulations,” Sol. Energy Mater. Sol. Cells 165, 119–127 (2017).
[21] Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M., “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi - Rapid Res. Lett. 10(8), 583–586 (2016).
[22] Whittles, T. J., Burton, L. A., Skelton, J. M., Walsh, A., Veal, T. D. and Dhanak, V. R., “Band Alignments, Valence Bands and Core Levels in the Band Alignments, Valence Bands and Core Levels in the Tin Sulfides SnS, SnS2 and Sn2S3: Experiment and Theory,” Chem. Mater. 28(11), 3718–3726 (2016).
[23] Konstantinos C. Christoforidis, Armelle Sengele, Valérie Keller, and N. K., “Single-step synthesis of SnS2 nanosheets decorated TiO2 anatase nanofibers as efficient photocatalysts for the degradation of gas phase diethylsulfide,” Appl. Mater. Interfaces 7(34), 19324–19334 (2015).
[24] S?nchez-Ju?rez, a., Tiburcio-Silver, a. and Ortiz, a., “Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition,” Thin Solid Films 480–481, 452–456 (2005).
[25] Williams, R. H., Murray, R. B., Govan, D. W., Thomas, J. M. and Evans, E. L., “Band structure and photoemission studies of SnS2 and SnSe2 . I. Experimental,” J. Phys. C Solid State Phys. 6(24), 3631–3642 (1973).
[26] Shiga, Y., Umezawa, N., Srinivasan, N., Koyasu, S., Sakai, E. and Miyauchi, M., “A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production,” Chem. Commun. 52(47), 7470–7473 (2016).
[27] Xu, Y. and Schoonen, M. A. A., “The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals,” Am. Mineral. 85, 543–556 (2000).
[28] Madelung, O., Semiconductors: Data Handbook, Springerr-Verlag Berlin Heidelberg, New York (2004).
[29] Deshpande, N. G., Sagade, A. A., Gudage, Y. G., Lokhande, C. D. and Sharma, R., “Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique,” J. Alloys Compd. 436(1–2), 421–426 (2007).
[30] Sun, Y., Cheng, H., Gao, S., Sun, Z., Liu, Q., Liu, Q., Lei, F. and Yao, T., “Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible- Light Water Splitting,” Angew. Chem. Int. Ed. 51(35), 8727–8731 (2012).
[31] Takeda, N. and Parkinson, B. A., “Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS2 Surfaces,” J. Am. Chem. Soc. 125(18), 5559–5571 (2003).
[32] Marc Burgelman, Koen Decock, Alex Niemegeers, Johan Verschraegen, S. D., SCAPS Manual, 17thed. (2016).
[33] Lindahl, J., Keller, J., Donzel-Gargand, O., Szaniawski, P., Edoff, M. and Torndahl, T., “Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 144, 684–690 (2016).
[34] Gloeckler, M., “Device physics of Cu(In,Ga)Se2 thin-film solar cells” (2005).
[35] Gunawan, O., Todorov, T. K. and Mitzi, D. B., “Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells,” Appl. Phys. Lett. 97, 233506 (2010).