اثر اندازه و شکل بر دمای‌کوری نانوساختارها گادولینیم: شبیه‌سازی مونت‌کارلو

نویسندگان

بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این پژوهش اثر اندازه و شکل نانوساختار بر دمای‌کوری گادولینیم با شکل‌های کروی، نانومیله و لایه نازک بر اساس الگوریتم مونت‌کارلو و با استفاده از نرم‌افزار ومپایر شبیه‌سازی شده است. دمای‌کوری نانوذرات کروی گادولینیم با کاهش اندازه از 10 به 1 نانومتر، از 289 کلوین به 245 کلوین کاهش می‌یابد. مشاهده می‌شود دمای‌کوری نانومیله‌های گادولینیم، با افزایش قطر نانومیله در یک نسبت ابعادی ثابت و همچنین با طول ثابت، افزایش می‌یابد. بعلاوه، مشاهده می‌شود که با افزایش ضخامت لایه نازک گادولینیم، دمای‌کوری افزایش می‌یابد. در نهایت، داده های شبیه سازی، با معادلات معرفی شده توسط سایر محقیقن تطبیق و ثابت معادلات استخراج می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Size and Shape Effect on the Curie temperature of Gadolinium of Nanostructures: Monte Carlo Simulation

نویسندگان [English]

  • A.R. Mohseni Basir
  • H. Delavari H.
  • R. Poursalehi
Department of Materials Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-143, Iran
چکیده [English]

In this research, the Curie temperature of gadolinium Gd nanostructures with shapes of nanoparticle, nanorod, and thin film were simulated based on the Monte Carlo algorithm via Vampire software. Curie temperature of Gd nanoparticles decreases from 289 K to 245 K by reducing the diameter size of Gd nanoparticle from 10 nm to 1 nm. It has been observed that with constant aspect ratio and also in constant length, the Curie temperature of Gd nanorod increase by increasing the nanorod diameter. In addition, the Curie temperature increases by increasing the thickness of Gd thin film. Finally, results of this simulation are fitted on proposed equations by other researcher to extract their corresponding constants.

کلیدواژه‌ها [English]

  • Curie Temperature
  • Size and Shape Effect
  • Gadolinium
  • Monte Carlo Simulation
  • Vampire
[1]M. Willard, L. Kurihara, E. Carpenter, S. Calvin, and V. Harris, “Chemically prepared magnetic nanoparticles,” International materials reviews, 49, 125-170, 2004
.[2] K. Raj, and R. Moskowitz,“Commercial applications of ferrofluids,Journal of Magnetism and Magnetic Materials, vol. 85,233-245, 1990.
[3]H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, 420, 395-398, 2002.[4] E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, and F. J. Teran, “Fundamentals and advances in magnetic hyperthermia,” Applied Physics Reviews, 2, 041302, 2015.
[5] J. Taracson, and M. Armand, “Issues and challenges facing lithium ion batteries,” nature, 414, 359-367, 2001.[6] T. Todaka, T. Kishino, and M. Enokizono, “Low Curie temperature material for induction heating self-temperature controlling system,” Journal of Magnetism and Magnetic Materials, 320, 702-707, 2008.
[7] O. Tegus, E. Brück, K. Buschow, and F. De Boer, “Transition-metal-based magnetic refrigerants for room-temperature applications,” Nature, 415, 150-152, 2002.[8] M. Bañobre-López, A. Teijeiro, and J.Rivas, “Magnetic nanoparticle-based hyperthermia for cancer treatment,” Reports of Practical Oncology & Radiotherapy, 18,397-400, 2013.
[9] M. Salimi, S. Sarkar, R. Saber, H. Delavari, A. M. Alizadeh, and H. T. Mulder, “Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles,” Cancer nanotechnology, 9,7-15, 2018
.[10] K.W. Baumann, J.M. Baust, K.K. Snyder, J. G. Baust, and R. G. Van Buskirk, “Characterization of Pancreatic Cancer Cell Thermal Response to Heat Ablation or Cryoablation,” Technology in cancer research & treatment, 16, 393-405, 2017.
[11]D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. 86Albrecht, “FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34, 060801-0608012, 2016.
[12] T. Ostler, J. Barker, R. Evans, R. Chantrell, U.Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, and L. Heyderman, “Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet,” Nature communications, 3,666-672, 2012.[13] N.D. Thorat, R. A.Bohara, S. A. Tofail, Z. A. Alothman, M. J. Shiddiky, M. S. A Hossain, Y. Yamauchi, and K. C. W. Wu*, Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie TemperatureCancer Theranostics for MR‐Imaging‐GuidedMagneto‐Chemotherapy,”European Journal of Inorganic Chemistry, 28,4586-4597, 2016.
[14] I.A. de Castro, A. F. Chrimes, A. Zavabeti, K. J. Berean, B. J. Carey, J. Zhuang, Y. Du, S. X. Dou, K. Suzuki, and R. A. Shanks, “A Gallium-Based Magnetocaloric LiquidMetal Ferrofluid,” Nano letters, 17, 7831-7838, 2017.
[15] A.G. Kolhatkar, Y.-T. Chen, P. Chinwangso, I. Nekrashevich, G.C. Dannangoda, A. Singh, A. C. Jamison, O. Zenasni, I. A. Rusakova, and K. S. Martirosyan, “Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres,” ACS omega, 2, 8010-8019, 2017.
[16] X. He, W. Zhong, C.-T. Au, and Y. Du, “Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method ”,Nanoscale research letters, 8, 446-456, 2013.[۱۷]س. ا. جلیلیییش شییبیه سییازی هییای رایانییه ای (دینامیییک مولکولی و مونت کارلو)ش تهران: انتشارات دانشگاه صنعتی خواجیه نصیرالدین طوسیش ۱۳۹5.[18]
R.F. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O .Ellis, and R. W. Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” Journal of Physics: Condensed Matter, 26, 103202-103223, 2014.
[19] D. Garanin, “Self-consistent Gaussian approximation for classical spin systems: Thermodynamics,” Physical Review B, 53, 17, 11593-11605, 1996.
[20] "VAMPIRE software package, Version 4. Available fromhttp://vampire.york.ac.uk/."
.[21] D. Hinzke, and U. Nowak, “Monte Carlo simulation of magnetization switching in a Heisenberg modelfor small ferromagnetic particles,” Computer physics communications, 121, 334-337, 1999.
[22] L.-F. Cao, X. Dan, M.-x. Guo, H. Park, and T. Fujita, “Size and shape effects on curie temperatureof ferromagnetic nanoparticles,” Transactions of Nonferrous Metals Society of China, 17, 1451-1455, 2007.
[23]S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, and Y. Li, “Universal relation for size dependentthermodynamic properties of metallic nanoparticles,” Physical Chemistry Chemical Physics, 13, 10652-10660, 2011.
[24] M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F. Gerhardter, “Thickness-dependent curie temperature of Gd (0001)/W (110) and its dependence on the growth conditions,” Physical Review B, 47,11571-11574, 1993.
[25] R. Zhang, and R. F. Willis, “Thickness-dependent curie temperatures of ultrathin magnetic films: effect of the range of spin-spin interactions,” Physical review letters,86, 2665-2668, 2001