مطالعه سینتیک تبلور در فرایند نانوبلورین شدن آلیاژ فاینمت

نویسندگان

1 گروه مهندسی مکانیک، واحد اسلام شهر، دانشگاه آزاد اسلامی، اسلام شهر، ایران

2 پژوهشکده علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران، ایران

3 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در این پژوهش سینتیک تبلور نانودانه ها در آلیاژ آمورف فاینمت در شرایط گرم کردن پیوسته مورد بررسی قرار گرفته است. به این منظور کالری متری تفاضلی روبشی در سرعت گرم کردن های مختلف روی نمونه های آمورف انجام گرفت. نتایج نشان می دهد که تبلور فاز آهن آلفا از حوالی دمای 450 درجه سانتی گراد شروع می شود. نتایج پراش اشعه ایکس ضمن تایید این نتایج اندازه نانوبلورهای تشکیل شده برای نمونه های آنیل شده در دماهای 450 و 550 درجه سانتی گراد به ترتیب 12 و 19 نانومتر نشان میدهد. بر اساس نتایج بدست آمده از کالری متری، انرژی اکتیواسیون متغیر واکنش با استفاده از روش ایزوکانورژنال پیشرفته ویازوکین محاسبه شد. مقادیر محاسبه شده نشان می دهد که انرژی اکتیواسیون تبلور در آلیاژ فاینمت با پیشرفت واکنش تغییر می کند و از 290 به 390 کیلوژول بر مول افزایش می یابد. تغییر انرژی اکتیواسیون با پیشرفت تحول نشان دهنده پیچیدگی و چند مرحله ای بودن واکنش نانوبلورین شدن است. محاسبه مدل واکنش بر اساس نتایج تجربی نشان می دهد که تحول نانوبلورین شدن به هیچ از مدل‌های تئوری منطبق نمی شود، ولی به مدل رشد سه بعدی کنترل شونده با فصل مشترک نزدیکتر از سایر مدل ها است. شکل کروی و هم محور نانودانه ها بر اساس نتایج میکروسکوپ الکترونی عبوری این نتایج را تایید می کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Kinetics of nanocrystallization inFinemet alloy

نویسندگان [English]

  • H. Asghari Shivaee 1 2
  • H.R. Madaah Hosseini 2 3
1 Department of Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2
3
چکیده [English]

In this study, the kinetics of nanocrystallization of amorphous Finemet alloys is investigated under non-isothermal condition. In order to estimate kinetic parameters, differential scanning calorimetric analyses of the amorphous samples were performed at various heating rates. This results show that crystallization of α-Fe phase starts at around 450 ̊C. X-ray diffraction pattern samples confirm these results. According to the XRD results, crystallite size of the sample annealed at 450 ̊C and 550 ̊C were 12 nm and 19 nm, respectively. Variable activation energy of crystallization was calculated, based on differential scanning calorimetric results and according to Vyazovkin advanced isoconversional method. Results show that, the activation energy is variable as a function of transformed fraction and increases from 290 to 390 kJ mol-1. Variation of activation energy confirms the complexity of nanocrystallization process. Numerical reconstruction of the reaction model using experimental data showed that nanocrystallization mechanism could not be described with a single theoretical model. But it is closer to three dimensional phase boundary reaction mechanism. Rrounded and isotropic crystallites observed on the TEM images confirmed these results.
 

کلیدواژه‌ها [English]

  • Isoconversional kinetics
  • Solid state reaction
  • Nanocrystalline
  • Amorphous
  • Finemet
[1] A.S. Bolyachkina, S.V. Komogortsev, “Powerlaw behavior of coercivity in nanocrystalline
magnetic alloys with grain-size distribution,”
Scripta Materialia, 152, 55-58, 2018.
[2] Y. Wang, Y. Zhang, A. Takeuchi, A. Makino, Y.
Kawazoe, “Investigation on the crystallization
mechanism difference between FINEMET® and
NANOMET® type Fe-based soft magnetic
amorphous alloys,” Journal of Applied Physics,
120, 145102(1)-145102(6), 2016.
[3] M.I. Oshtrakh, Z. Klencsar, V.A. Semionkin, E.
Kuzmann, Z. Homonnay, L.K. Varga, “Annealed
FINEMET ribbons: Structure and magnetic
anisotropy as revealed by the high velocity
resolution mossbauer spectroscopy,” Materials
Chemistry and Physics, 180, 66-74, 2016.
[4] J. A. Moya, “Improving soft magnetic properties
in FINEMET-like alloys. A study,” Journal of
Magnetism and Magnetic Materials, 622, 635-639,
2015.
[5] M. Willard, M. Daniil, “Nanocrystalline soft
magnetic alloys - two decades of progress,”
Elsevier, 173-342, 2013.
[6] G. Herzer, “Soft magnetic materials–
nanocrystalline alloys,” John wiley & Sons Inc., 1-
27, 2007.
[7] T. Gheiratmand, H.R. Madaah Hosseini,
“Finemet nanocrystalline soft magnetic alloy:
Investigation of glass forming ability,
crystallization mechanism, production techniques,
magnetic softness and the effect of replacing the
main constituents by other elements,” Journal of
Magnetism and Magnetic Materials, 408, 177-192,
2016.
[8] M. T. Clavaguera-Mora, N. Clavaguera, D.
Crespo, T. Pradell, “Crystallisation kinetics and
microstructure development in metallic systems,”
Progress in Materials Science, 47, 559-619, 2002.
شکل 5 :مدل آزمایشگاهی تحول محاسبه شده بر اساس نتایج تجربی و
برخی از مدلهای تئوری نزدیک به آن
59 تابستان ۱۳۹8 |شماره دوم | سال ششم
[9] H. A. Shivaee, A. Castellero, P. Rizzi1, P.
Tiberto, H. R. Madaah Hosseini, M. Baricco,
“Effects of chemical composition on
nanocrystallization kinetics, microstructure and
magnetic properties of Finemet-type amorphous
alloys,” Metals and Materials International, 19, 643-
649, 2013.
[10] A. Kolano-Burian, P. Wlodarczyk, L. Hawelek,
R. Kolano, M. Polak, P. Zackiewicz, L. Temleitner,
“Impact of cobalt content on the crystallization
pattern in the Finemet-type ribbons,” Journal of
Alloys and Compounds, 615, S203-S207, 2014.
[11] W. Lu, B. Yan, W. Huang, “Complex primary
crystallization kinetics of amorphous Finemet
alloy,” Journal of Non-Crystalline Solids, 351,
3320-3324, 2005.
[12] W. Lu, L. Yang, B. Yan, W. Huang,
“Nanocrystallization kinetics of amorphous
Fe73.5Cu1Nb3Si13.5B9 alloy,” Journal of Alloys and
Compounds, 420, 186-192, 2006.
[13] Z. Xie, Z. Wang, Y. Han, F. Han, “Influence of
Ge on crystallization kinetics, microstructure and
high-temperature magnetic properties of Si-rich
nanocrystalline FeAlSiBCuNbGe alloy,” Journal of
Non-Crystalline Solids, 463, 1-5, 2017.
[14] Z. Zheng, G. Zhao, L. Xu, L. Wang, B. Yan,
“Influence of Ni addition on nanocrystallization
kinetics of FeCo-based amorphous alloys,” Journal
of Non-Crystalline Solids, 434, 23-27, 2016.
[15] A. Pratap, T. Lilly Shanker Rao, K. N. Lad, H.
D. Dhurandhar, “Isoconversional vs. model fitting
methods. A case study of crystallization kinetics of
a Fe-based metallic glass” Journal of Thermal
Analysis and Calorimetry, 89, 399-405, 2007.
[16] S. Vyazovkin, “Evaluation of activation energy
of thermally stimulated solid-state reactions under
arbitrary variation of temperature,” Journal of
Computational Chemistry, 18, 393-402, 1997.
[17] S. Vyazovkin, D. Dollimore, “Linear and
nonlinear procedures in isoconversional
computations of the activation energy of
nonisothermal reactions in solids,” Journal of
Chemical Information and Computer Sciences, 36,
42-45, 1996.
[18] T. Gheiratmand, H.R. Madaah Hosseini, P.
Davami, F. Ostadhossein, M. Song, M Gjoka, “On
the effect of cooling rate during melt spinning of
FINEMET ribbons,” Nanoscale, 5, 7520-7527,
2013.
[19] B.D. Cullity, S.R. Stock, “Elements of x-ray
diffraction,” Prentice-Hall Inc., 167-171, 2001.
[20] D. Jacovkis, J. Rodriguez-Viejo, M. T.
Clavaguera-Mora, “Isokinetic analysis of
nanocrystallization in an Al–Nd–Ni amorphous
alloy,” Journal of Physics: Condensed Matter, 17,
4897-4910, 2005.
[21] M. E. Brown, P. K. Gallagher, “Handbook of
thermal analysis and calorimetry,” Elsevier, 5, 503-
538, 2008.