بکارگیری کلینوپتیلولیت بعنوان پایه نانوتیتانیا بمنظور تولید هیدروژن در فرآیند شکافت آب

نویسندگان

1 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، کردستان

2 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه رازی، کرمانشاه، کرمانشاه

چکیده

در این پژوهش، تولید هیدروژن از طریق فرآیند شکافت آب روی فتوکاتالیست نانوساختار TiO2/clinoptilolite مورد ارزیابی قرار گرفت و اثر حضور پایه کلینوپتیلولیت بر روی فعالیت فتوکاتالیست، بررسی شد. در این راستا، فتوکاتالیست‌ حاوی 30 وزنی از نانوتیتانیا روی کلینوپتیلولیت با استفاده از روش توزیع حالت جامد SSD تهیه شد. نمونه‌ها تحت آنالیزهای XRD، FESEM، BET، EDX، FTIR، PL و UV-vis مورد شناسایی قرار گرفتند. نتایج آنالیزهای شناسایی بیانگر این است که حضور کلینوپتیلولیت علاوه بر اینکه منجر به کاهش بازترکیب جفت‌های الکترون-حفره می‌شود، توزیع ذرات TiO2 را بهبود داده و از تشکیل کلوخه‌ها، روی سطح فتوکاتالیست، به میزان قابل توجهی می‌کاهد. میزان تولید هیدروژن بعد از گذشت زمان 4 ساعت برابر با 16/134 به دست آمد که تقریباً دو برابر مقدار آن توسط TiO2 خالص می‌باشد. فتوکاتالیست TiO2/clinoptilolite پس از 5 بار استفاده، کمترین افت فعالیت را داشت که نشان از پایداری و قابلیت استفاده مجدد این فتوکاتالیست می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Utilization of Clinoptilolite as a Support of Nano-titania for Hydrogen Production viaWater Splitting Process

نویسندگان [English]

  • Rojiar. Akbari sene 1
  • Shahram .Sharifnia 2
  • Gholamreza .Moradi 2
1 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Department of Chemical Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Hydrogen evolution via water splitting was investigated over the nanostructured TiO2/clinoptilolite photocatalyst with the aim of exploring the natural zeolitic support potential on the photocomposite reactivity. To this aim, a clinoptilolite supported TiO2 photocatalyst with 30 wt. titania content was synthesized by the facile solid state dispersion SSD method. The samples were characterized by XRD, FESEM, EDX, BET, FTIR, PL and UV-vis techniques. The characterization results indicated that clinoptilolite utilization could not only reduce the recombination of electron–hole pairs but also promote the distribution of metallic particles and decrease the TiO2 particle agglomerations. The high photocatalytic activity, 134.16 , was obtained for the TiO2/clinoptilolite sample which was about 2 times more than that of bare TiO2. Furthermore, TiO2/clinoptilolite photocatalyst showed sufficient reusability, making it a good choice for photocatalytic water splitting applications.

کلیدواژه‌ها [English]

  • Clinoptilolite Support
  • Hydrogen Production
  • Titanium Dioxide
  • Water Splitting
  • Photocatalysis
[1] L.S. Yoong, F.K. Chong and B.K. Dutta,
“Development of copper-doped TiO2 photocatalyst
for hydrogen production under visible light,”
Energy, 34, 1652-61, 2009.
[2] H. Li and X. Cui, “A hydrothermal route for
constructing reduced graphene oxide/TiO2
nanocomposites: Enhanced photocatalytic activity
for hydrogen evolution,” Int. J. Hydrogen Energy,
39, 19877-86, 2014.
[3] S. Xu, J. Ng, A.J. Du, J. Liu and D.D. Sun,
“Highly efficient TiO2 nanotube photocatalyst for
simultaneous hydrogen production and copper
removal from water,” Int. J. Hydrogen Energy, 36,
6538-45, 2011.
[4] S. Xu, J. Ng, X. Zhang, H. Bai and D.D. Sun,
“Fabrication and comparison of highly efficient Cu
incorporated TiO2 photocatalyst for hydrogen
generation from water,” Int. J. Hydrogen Energy,
35, 5254-61, 2010.
[5] L. Long, J. Li, L. Wu and X. Li, “Enhanced
photocatalytic performance of platinized CdS/TiO2
by optimizing calcination temperature of TiO2
nanotubes,” Mater. Sci. Semicond. Process, 26,
107-11, 2014.
[6] N. Dubey, S.S. Rayalu, N.K. Labhsetwar and S.
Devotta, “Visible light active zeolite-based
photocatalysts for hydrogen evolution from water,”
Int. J. Hydrogen Energy, 33, 5958-66, 2008.
[7] E. Pulido Melián, O. González Díaz, A. Ortega
Méndez, C.R. López, M. Nereida Suárez and J.M.
Doña Rodríguez, “Efficient and affordable
hydrogen production by water photo-splitting using
TiO2-based photocatalysts,” Int. J. Hydrogen
Energy, 38, 2144-55, 2008.
[8] S. Obregón, M.J. Muñoz-Batista, M.
Fernández-García, A. Kubacka and G. Colón, “Cu–
TiO2 systems for the photocatalytic H2 production:
Influence of structural and surface support
features,” Appl. Catal. B: Environ., 179, 468-78,
2015.
[9] A. Kudo and Y. Miseki, “Heterogeneous
photocatalyst materials for water splitting,” Chem.
Soc. Rev., 38, 253-78, 2009.
[10] S. Xu, and D.D. Sun, “Significant
improvement of photocatalytic hydrogen
generation rate over TiO2 with deposited CuO,”
Int. J. Hydrogen Energy, 34, 6096-104, 2009.
[11] M. Ni, M.KH. Leung, DYC. Leung and K.
Sumathy, “A review and recent developments in
photocatalytic water-splitting using for hydrogen
production,” Renew. Sust. Energ. Rev., 11, 401-25,
2007.
[12] Wang C., Shi H., Li Y., “Synthesis and
characteristics of natural zeolite supported Fe3+
-
TiO2 photocatalysts”, Appl. Surf. Sci., 257, 6873-
7, 2011.
[13] M. Hakamizadeh, S. Afshar, A. Tadjarodi, R.
Khajavian, M.R. Fadaie and B. Bozorgi,
“Improving hydrogen production via water
splitting over Pt/TiO2/activated carbon
nanocomposite,” Int. J. Hydrogen Energy, 39,
7262-9, 2014.
[14] J. Romão, R. Salata, S-Y. Park and G. Mul,
“Photocatalytic methanol assisted production of
hydrogen with simultaneous degradation of methyl
orange,” Appl. Catal. A:Gen., 518, 206-12, 2016.
17 تابستان ۱۳۹8 |شماره دوم | سال ششم
[15] H. Ahmad, S.K. Kamarudin, L.J. Minggu and
M. Kassim, “Hydrogen from photo-catalytic water
splitting process: A review,” Renew. Sust. Energ.
Rev., 43, 599-610, 2015.
[16] A. Taheri Najafabadi and F. Taghipour,
“Physicochemical impact of zeolites as the support
for photocatalytic hydrogen production using solaractivated TiO2-based nanoparticles”, Energ.
Convers. Manage., 82, 106-13, 2014.
[17] A. Chica, “Visible light active zeolite-based
photocatalysts for hydrogen evolution from water,”
ISRN Chem. Eng., 2013, 1-19, 2013.
[18] S. Ikeda, K. Hirao, S. Ishino, M. Matsumura
and B. Ohtani, “Preparation of platinized strontium
titanate covered with hollow silica and its activity
for overall water splitting in a novel phaseboundary photocatalytic system,” Catal. toady,
117, 343-9, 2006.
[19] Y. Xu, W. Zheng and W. Liu, “Enhanced
photocatalytic activity of supported TiO2:
dispersing effect of SiO2,” J. Photochem.
Photobiol. A: Chem., 122, 57-60, 1999.
[20] J-M. Herrmann, J. Matos, J. Disdier, C.
Guillard, J. Laine and S. Malato, “Solar
photocatalytic degradation of 4-chlorophenol using
the synergistic effect between titania and activated
carbon in aqueous suspension,” Catal. toady, 54,
255-65, 1999.
[21] S.K. Parayil, H.S. Kibombo and R.T. Koodali,
“Naphthalene derivatized TiO2–carbon hybrid
materials for efficient photocatalytic splitting of
water,” Catal. Today, 199, 8-14, 2013.
[22] T. Torimoto, Y. Okawa, N. Takeda and H.
Yoneyama, “Effect of activated carbon content in
TiO2-loaded activated carbon on photodegradation
behaviors of dichloromethane,” J. Photochem.
Photobiol. A: Chem., 103, 153-7, 1997.
[23] S. Gomez, C.L. Marchena, L. Pizzio and L.
Pierella, “Preparation and characterization of
TiO2/HZSM-11 zeolite for photodegradation of
dichlorvos in aqueous solution,” J. Hazard. Mater.,
258-259, 19-26, 2013.
[24] S. Shen and L. Guo, “Hydrothermal synthesis,
characterization, and photocatalytic performances
of Cr incorporated, and Cr and Ti co-incorporated
MCM-41 as visible light photocatalysts for water
splitting,” Catal. Today, 129, 414-20, 2007.
[25] V. Durgakumari, M. Subrahmanyam, K.V.
Subba Rao, A. Ratnamala, M. Noorjahan and K.
Tanaka, “An easy and efficient use of TiO2
supported HZSM-5 and TiO2+HZSM-5 zeolite
combinate in the photodegradation of aqueous
phenol and p-chlorophenol,” Appl. Catal. A:Gen.,
234, 155-65, 2002.
[26] M. Mahalakshmi, S. Vishnu Priya, B.
Arabindoo, M. Palanichamy and V. Murugesan,
“Photocatalytic degradation of aqueous propoxur
solution using TiO2 and Hβ zeolite-supported
TiO2,” J. Hazard. Mater., 161, 336-43, 2009.
[27] N. Dubey, N.K. Labhsetwar, S. Devotta and
S.S. Rayalu, “Hydrogen evolution by water
splitting using novel composite zeolite-based
photocatalyst,” Catal. Today, 129, 428-34, 2007.
[28] C. Jiang, K.Y. Lee, C.M.A. Parlett, M.K.
Bayazit, C.C. Lau and Q. Ruan, “Size-controlled
TiO2 nanoparticles on porous hosts for enhanced
photocatalytic hydrogen production,” Appl. Catal.
A:Gen., 521, 133-9, 2016.
[29] C. Wang, H. Shi H and Y. Li, “Synthesis and
characterization of natural zeolite supported Cr-
18 تابستان ۱۳۹8 |شماره دوم | سال ششم
doped TiO2 photocatalysts,” Appl. Surf. Sci., 258,
4328-33, 2012.
[30] Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and
H. Li, “Influence of calcination temperature on the
structural, adsorption and photocatalytic properties
of TiO2 nanoparticles supported on natural
zeolite,” Powder Technol., 274, 88-97, 2015.
[31] S. Liu, M. Lim and R. Amal, “TiO2-coated
natural zeolite: Rapid humic acid adsorption and
effective photocatalytic regeneration,” Chem. Eng.
Sci., 105, 46-52, 2014.
[32] A. Taheri Najafabadi and F. Taghipour,
“Cobalt precursor role in the photocatalytic activity
of the zeolite-supported TiO2-based photocatalysts
under visible light: A promising tool toward
zeolite-based core–shell photocatalysis,” J.
Photochem. Photobiol. A: Chem., 248, 1-7, 2012.
[33] F. Rahmani, M. Haghighi and M. Amini, “The
beneficial utilization of natural zeolite in
preparation of Cr/clinoptilolite nanocatalyst used in
CO2-oxidative dehydrogenation of ethane to
ethylene,” J. Ind. Eng. Chem., 31, 142-55, 2015.
[34] S. Khodadoust, A. Sheini and N. Armand,
“Photocatalytic degradation of monoethanolamine
in wastewater using nanosized TiO2 loaded on
clinoptilolite,” Spectrochim. Acta A: Mol. Biomol.
Spectrosc., 92, 91-5, 2012.
[35] S. Ko, P.D. Fleming, M. Joyce and P. AriGur, “High performance nano-titania
photocatalytic paper composite. Part II: Preparation
and characterization of natural zeolite-based nanotitania composite sheets and study of their
photocatalytic activity,” Mater. Sci. Eng. B Solid.
State Mater. Adv. Technol., 164, 135-9, 2009.
[36] F. Rahmani, M. Haghighi and S. Mahboob,
“CO2-enhanced dehydrogenation of ethane over
sonochemically synthesized Cr/clinoptilolite-ZrO2
nanocatalyst: Effects of ultrasound irradiation and
ZrO2 loading on catalytic activity and stability,”
Ultrason Sonochem, 33, 150-63, 2016.
[37] M. Bahrami and A. Nezamzadeh-Ejhieh,
“Effect of the supported ZnO on clinoptilolite
nano-particles in the photodecolorization of semireal sample bromothymol blue aqueous solution,”
Mater. Sci. Semicond. Process, 30, 275-84, 2015.
[38] Z. Yan, X. Yu, Y. Zhang, H. Jia, Z. Sun and P.
Du, “Enhanced visible light-driven hydrogen
production from water by a noble-metal-free
system containing organic dye-sensitized titanium
dioxide loaded with nickel hydroxide as the
cocatalyst,” Appl. Catal. B: Environ., 160-161,
173-8, 2014.
[39] T. Sreethawong, C. Junbua, and S. Chavadej,
“Photocatalytic H2 production from water splitting
under visible light irradiation using Eosin Ysensitized mesoporous-assembled Pt/TiO2
nanocrystal photocatalyst,” J. Power Sources.,
190, 513-24, 2009.
[40] I. Chiu, S.X. Lin, C.T. Kao and R.J. Wu,
“Promoting hydrogen production by loading PdO
and Pt on N–TiO2 under visible light,” Int. J.
Hydrogen Energy, 39, 14574-80, 2014.
[41] M.T. Merajin, S. Sharifnia, S.N. Hosseini and
N. Yazdanpour, “Photocatalytic conversion of
greenhouse gases (CO2 and CH4) to high value
products using TiO2 nanoparticles supported on
stainless steel webnet,” J. Taiwan Inst. Chem.
Eng., 44, 239-46, 2013.
[42] F. Rahmani, M. Haghighi, Y. Vafaeian and P.
Estifaee, “Hydrogen production via CO2 reforming
19 تابستان ۱۳۹8 |شماره دوم | سال ششم
of methane over ZrO2-Doped Ni/ZSM-5
nanostructured catalyst prepared by ultrasound
assisted sequential impregnation method,” J.Power
Sources., 272, 816-27, 2014.
[43] F. Rahmani and M. Haghighi, “C2H6/CO2
oxidative dehydrogenation (ODH) reaction on
nanostructured CrAPSO-34 catalyst: One-pot
hydrothermal vs. conventional
hydrothermal/impregnation catalyst synthesis,”
Korean J. Chem. Eng., 33, 2555-66, 2016.
[44] F. Rahmani and M. Haghighi, “Sonodispersion of Cr over nanostructured LaAPSO-34
used in CO2 assisted dehydrogenation of ethane:
Effects of Si/Al ratio and La incorporation,” J.
Nat. Gas Sci. Eng., 27, 1684-701, 2015.
[45] G. Guo, Y. Hu, S. Jiang and C. Wei,
“Photocatalytic oxidation of NOx over
TiO2/HZSM-5 catalysts in the presence of water
vapor: Effect of hydrophobicity of zeolites,” J.
Hazard. Mater., 223-224, 39-45, 2012.
[46] P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K.
Sinha and O.N. Srivastava, “Synthesis of reduced
graphene oxide–TiO2 nanoparticle composite
systems and its application in hydrogen production,
” Int. J. Hydrogen Energy, 39, 16282-92, 2014.
[47] H.B. Yener, M. Yılmaz, Ö. Deliismail, SF.
Özkan and ŞŞ. Helvacı, “Clinoptilolite supported
rutile TiO2 composites: Synthesis, characterization,
and photocatalytic activity on the degradation of
terephthalic acid,” Sep. Purif. Technol., 173, 17-
26, 2017.
[48] H. Zabihi-Mobarakeh and A. NezamzadehEjhieh, “Application of supported TiO2 onto
Iranian clinoptilolite nanoparticles in the
photodegradation of mixture of aniline and 2, 4-
dinitroaniline aqueous solution,” J. Ind. Eng.
Chem., 26, 315-21, 2015.
[49] W. Zhang, F. Bi, Y. Yu and H. He,
“Phosphoric acid treating of ZSM-5 zeolite for the
enhanced photocatalytic activity of TiO2/HZSM5,” J. Mol. Catal. A: Chem., 372, 6-12, 2013.
[50] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii
and M. Honda, “Photocatalytic Reduction of CO2
with H2O on Titanium Oxides Anchored within
Micropores of Zeolites:  Effects of the Structure of
the Active Sites and the Addition of Pt,” J. Phys.
Chem. B, 101, 2632-6, 1997.
[51] A.H. Alwash, A.Z. Abdullah and N. Ismail,
“Zeolite Y encapsulated with Fe-TiO2 for
ultrasound-assisted degradation of amaranth dye in
water,” J. Hazard. Mater., 233-234, 184-93, 2012.
[52] H. Yahiro, T. Miyamoto, N. Watanabe and H.
Yamaura, “Photocatalytic partial oxidation of αmethylstyrene over TiO2 supported on zeolites,”
Catal. Today, 120, 158-62, 2007.
[53] J.D. Lin, S. Yan, Q.D. Huang, M.T. Fan, Y.Z.
Yuan and T.T.Y. Tan, “TiO2 promoted by two
different non-noble metal cocatalysts for enhanced
photocatalytic H2 evolution,” Appl. Surf. Sci., 309,
188-93, 2014.
[54] T. Sun, E. Liu, J. Fan, X. Hu, F. Wu and W.
Hou, “High photocatalytic activity of hydrogen
production from water over Fe doped and Ag
deposited anatase TiO2 catalyst synthesized by
solvothermal method,” Chem. Eng. J., 228, 896-
906, 2013
[55] P. Cheng, Z. Yang, H. Wang, W. Cheng, M.
Chen and W. Shangguan, “TiO2–graphene
nanocomposites for photocatalytic hydrogen
20 تابستان ۱۳۹8 |شماره دوم | سال ششم
production from splitting water” Int. J. Hydrogen
Energy, 37, 2224-30, 2012..