تهیه و مطالعه فتوکاتالیستی نانو ماده هسته-پوسته SiO2/CuS برای تخریب رنگدانه متیلن بلو

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه شیمی، دانشکده علوم پایه، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران

چکیده

در این پژوهش سنتز نانوساختارهای هسته SiO2 – پوسته CuS با روش ساده شیمیایی تر توسعه یافته است. محصولات با آنالیز پراش اشعه ایکس XRD، طیف سنجی بازتابش انتشاری DRS، میکروسکوپ الکترونی روبشی SEM، میکروسکوپ الکترونی عبوری TEM، آنالیز عنصری EDS و طیف سنجی مادون قرمز با تبدیل فوریه FT-IR مورد شناسایی قرار گرفتند. مطالعات ریخت شناسی، یکنواختی در توزیع اندازه ذرات هسته با اندازه 250 نانومتر و ضخامت لایه 15-6 نانومتر را نشان داد. بررسی‌های ساختاری نشان داد که پوسته CuS با ساختار شش ضلعی کوولیت ساخته شده است و هیچگونه نشانی از ناخالصی در ساختار بلوری ترکیب وجود ندارد. شکاف انرژی لایه مسII سولفید eV 1/3 محاسبه گردید که علت آن به دلیل ایجاد محدودیت کوانتمی در ترکیب نیمه رسانا است. فعالیت فتوکاتالیستی نانوکامپوزیت تحت تابش نور مرئی برای تخریب رنگدانه متیلن بلو MB مورد مطالعه قرار گرفت. چندین پارامتر مانند مقدار کاتالیزور L-1g 5/1-05/0، pH 13-1 و غلظت اولیه رنگدانه ppm 10-96/0 آزمایش شد. مقدار تخریب به کمک اسپکتروفتومتری از روی غلظت رنگدانه باقیمانده تخمین زده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation and photocatalytic study of SiO2/CuS coreshell nanomaterial for degradation of methylene blue dye

نویسندگان [English]

  • B. Azari 1
  • A. Pourahmad 1
  • B. Sadeghi 2
  • M. Mokhtary 1
1 Department of Chemistry, Faculty of Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Department of Chemistry, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
چکیده [English]

In this work, core SiO2 –shell CuS nanostructures have beendeveloped using a simple wet chemical route. X-ray diffraction analysis XRD, diffuse reflectance spectroscopy DRS, scanning electron microscopy SEM, transmission electron microscopy TEM, EDS and fourier transform infrared FT-IR were used to characterize the products.The morphological studies revealed theuniformity in size distribution with core size of 250 nm andshell thickness of 7.5-17 nm. The structural studies indicate hexagonal structure of covellite CuS shell with no other trace for impurities in the crystalstructure. This CuS layer exhibit the band gap energy of3.1 eV, due to quantum confinement and numerousdefects presence.Photocatalytic activity of nanocomposites was studied for degradation of Methylene Blue MB under visible light. Several parameters were examined, catalyst amount 0.1–1 g L-1, pH 1–13 and initial concentration of MB 0.96–10 ppm. The extent of degradation was estimated from the residual concentration by spectrophotometrically.

کلیدواژه‌ها [English]

  • Nanocomposite
  • CuS
  • Photocatalyst
  • Nanoparticle
  • Dye
[1] P. Reiss, M. Protie`re, L. Li, “Core/shell
semiconductor nanocrystals,” Small, 5,154-168,
2009.
[2] Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin,
“Core–shell nanostructured catalysts,” Accounts of
Chemical Research, 46, 1816-1824, 2012.
[3] X.G. Peng, “Band gap and composition
engineering on a nanocrystal (BCEN) in solution,”
Accounts of Chemical Research, 43, 1387-1395,
2010.
[4] Y.C. Shang, P. Yang, W. Wang, Y. Wang, N.
Niu, S. Gai, J. Lin, “Sol–gel preparation and
characterization of uniform core-shell structured
LaInO3:Sm3+/Tb3+@SiO2 phosphors,” Journal of
Alloys and Compounds, 509, 837-844, 2011.
[5] N. Ghows, M.H. Entezari, “Fast and easy
synthesis of core–shell nanocrystal (CdS/TiO2) at
low temperature by micro-emulsion under
ultrasound,” Ultrasonics Sonochemistry, 18, 629-
634, 2011.
[6] B.P. Bastakoti, S. Guragain, S.I. Yusa, K.
Nakashima, “.Novel synthesis route for Ag@SiO2
شکل ۹ :تکرارپذیری نانوکاتالیست برای تخریب نوری رنگدانه متیلن بلو.
112 پاییز 1398 |شماره سوم | سال ششم
core–shell nanoparticles via micelle template of
double hydrophilic block copolymer,” RSC
Advances, 2, 5938-5940, 2012.
[7] J. Ryu, C.B. Park, “Synthesis of
diphenylalanine/polyaniline core/shell conducting
nanowires by peptide self‐assembly,” Angewandte
Chemie International Edition, 48, 4820-4823,
2009.
[8] M. Trejo, P. Santiago, H. Sobral, L. Rendon, U.
Pal, “Synthesis and growth mechanism of onedimensional Zn/ZnO core-shell nanostructures in
low-temperature hydrothermal process,” Crystal
Growth & Design, 9, 3024-3030, 2009.
[9] J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu,
W. Chu, “One-step solvothermal synthesis of
Fe3O4@C core–shell nanoparticles with tunable
sizes,” Nanotechnology, 23, 165601, 2012.
[10] R. Comparelli, E. Fanizza, M.L. Curri, P.D.
Cozzoli, G. Mascolo, A. gostiano, “UV-induced
photocatalytic degradation of azo dyes by organiccapped ZnO nanocrystals immobilized onto
substrates,” Applied Catalysis B: Environmental,
60, 1-11, 2005.
[11] V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A.
Nayak, S. Agarwal, S. Sikarwar, “Photo-catalytic
degradation of toxic dye amaranth on TiO2/UV in
aqueous suspensions,” Materials Science and
Engineering: C, 32, 12-17, 2012.
[12] A. Nezamzadeh-Ejhieh, Z. ShamsGhahfarokhi, “Photodegradation of methyl green
by nickel-dimethylglyoxime/ZSM-5 zeolite as a
heterogeneous catalyst,” Journal of Chemistry,
2013, 11, 2012.
[13] M. Krissanasaeranee, S. Wongkasemjit, A.K.
Cheetham, D. Eder, “Complex carbon nanotubeinorganic hybrid materials as next-generation
photocatalysts,” Chemical Physics Letters, 496,
133-138, 2010.
[14] W. Zhang, Y. Li, C. Wang, P. Wang,
“Kinetics of heterogeneous photocatalytic
degradation of rhodamine B by TiO2-coated
activated carbon: Roles of TiO2 content and light
intensity,” Desalination, 266, 40-45, 2011.
[15] A. Nezamzadeh-Ejhieh, M. Amiri, “CuO
supported clinoptilolite towards solar
photocatalytic degradation of p-aminophenol,”
Powder Technology, 235, 279-288, 2013.
[16] A. Nezamzadeh-Ejhieh, N. Moazzeni,
“Sunlight photodecolorization of a mixture of
methyl orange and bromocresol green by CuS
incorporated in a clinoptilolite zeolite as a
heterogeneous catalyst,” Journal of Industrial and
Engineering Chemistry, 19, 1433-1442, 2013.
[17] Sh. Sohrabnezhad, A. Rezaei, “Plasmonic
photocatalyst system using Ag/AgBr/mordenite
nanocrystal under visible light,” Superlattices and
Microstructures, 55, 168-179, 2013.
[18] E. Godocikova, P. Balaz, J.M. Criado, C.
Real, E. Gock, “Thermal behaviour of
mechanochemically synthesized nanocrystalline
CuS,” Thermochimica Acta, 440, 19-22, 2006.
[19] Ch. Tan, Y. Zhu, R. Lu, P. Xue, Ch. Bao, X.
Liu, Z. Fei, Y. Zhao, “Synthesis of copper sulfide
nanotube in the hydrogel system,” Materials
Chemistry and Physics, 91, 44-47, 2005.
[20] M. Tsuji, M. Hashimoto, Y. Nishizawa, T.
Tsuji, “Synthesis of gold nanorods and nanowires
by a microwave–polyol method,” Materials Letters,
58, 2326-2330, 2004.
[21] T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo,
J.S. Huang, “CuS nanoflowers prepared by a
polyol route and their photocatalytic property,”
Materials Letters, 62, 4529-4531, 2008.
[22] M.A. Yildirim, A. Ates, A. Astam,
“Annealing and light effect on structural, optical
and electrical properties of CuS, CuZnS and ZnS
thin films grown by the SILAR method,” Physica
E, 41, 1365-1372, 2009.
[23] Y.C. Zhang, T. Qiao, X.Y. Hu, J. Cryst, “A
simple hydrothermal route to nanocrystalline CuS,”
Journal of Crystal Growth, 268, 64-70, 2004.
113 پاییز 1398 |شماره سوم | سال ششم
[24] L. Gao, E. Wang, S. Lian, S. Kang, Y. Lan, D.
Wu, “Microemulsion-directed synthesis of
different CuS nanocrystals,” Solid State
Communications, 130, 309-312, 2004.
[25] Y. Kievsky, I. Sokolov, “Self-assembly of
uniform nanoporous silica fibers,” IEEE
Transactions on Nanotechnology, 4, 490-494,
2005.
[26] J. Cha, D. Jung, “CuGaS2 hollow spheres
from Ga–CuS core–shell nanoparticles,”
Ultrasonics Sonochemistry, 21, 1194-1199, 2014.
[27] Zamin Q. Mamiyev, Narmina O. Balayeva,
“Preparation and optical studies of PbS
nanoparticles,” Optical materials, 46, 522-525,
2015.
[28] K.M. Parida, D. Rath, “Surface
characterization and catalytic evaluation of copperpromoted Al-MCM-41 toward hydroxylation of
phenol,” Journal of Colloid and Interface Science,
340, 209-217, 2009.
[29] Sh. Sohrabnezhad, A. Valipour, “Synthesis of
Cu/CuO nanoparticles in mesoporous material by
solid state reaction,” SpectrochimicaActa Part A:
Molecular and Biomolecular Spectroscopy, 114,
298-302, 2013.
[30] H.T. Boey, W.L. Tan, N.H.H. Abu Bakar, M.
Abu Bakar, J. Ismail, “Formation and morphology
of colloidal chitosan-stabilized copper sulfides,”
Journal of Physical Science, 18, 87-101, 2007.
[31] E.J. Silvester, F. Grieser, B.A. Seton, T.W.
Healy, “Spectroscopic studies on copper sulfide
sols,” Langmuir, 7, 2917-2922, 1991.
[32] M.D. Regulacio, Ch. Ye, S.H. Lim, M.
Bosman, L. Polavarapu, W.L. Koh, J. Zhang, Q.-H.
Xu, M.-Y. Han, “One-pot synthesis of Cu1. 94S−
CdS and Cu1. 94S− Zn x Cd1− x S nanodisk
heterostructures,” Journal of the American
Chemical Society, 133, 2052-2055, 2011.
[33] R. Saikia, P.K. kalita, P. Datta, “Effect of
green growth mechanism on structural and optical
properties of Cu^ sub 2^ S nanostructures,” Journal
of Chemical, Biological and Physical Sciences, 2,
2091, 2012.
[34] O. Akhavan, E. Ghaderi, “Cu and CuO
nanoparticles immobilized by silica thin films as
antibacterial materials and photocatalysts,” Surface
and Coatings Technology, 205, 219-223, 2010.
[35] C.C. Trapalis, M. Kokkoris, G. Perdikakis, G.
Kordas, “Study of antibacterial composite Cu/SiO2
thin coatings,” Journal of Sol-Gel Science and
Technology, 26, 1213-1218, 2003.
[36] M.J. Maclachlan, M. Ginzburg, N. Coombs,
N.P. Raju, J.E. Greedan, G.A. Ozin, L. Manners,
“Superparamagnetic ceramic nanocomposites:
Synthesis and pyrolysis of ring-opened
poly(ferrocenylsilanes) inside periodic mesoporous
silica,” Journal of the American Chemical Society,
122, 3878-3891, 2000.
[37] S.K. Nath, P.K. Kalita, “Chemical synthesis of
copper sulfide nanoparticles embedded in PVA
matrix,” Journal of Nanoscience and
Nanotechnology, 2, 8, 2012.
[38] M.V. Phanikrishna, V. durgakumari, M.
Subrahmanyam, “Solar photocatalytic degradation
of isoproturon over TiO2/H-MOR composite
systems,” Journal of Hazardous Materials, 160,
568-575, 2008.
[39] S. Parra, J. Olivero, C. Pulgarin,
“Relationships between physicochemical properties
and photoreactivity of four biorecalcitrant
phenylurea herbicides in aqueous TiO2
suspension,” Applied Catalysis B: Environmental,
36, 75-85, 2002.
[40] C.C. Wang, C.k. Lee, M.D. Lyu, L.C. Juang,
“Photocatalytic degradation of C.I. Basic Violet 10
using TiO2 catalysts supported by Y zeolite: An
investigation of the effects of operational
parameters,” Dyes and Pigments, 76, 817-824,
2008.
[41] W.Y. Wang, Y. Ku, “Effect of solution pH on
the adsorption and photocatalytic reaction
behaviors of dyes using TiO2 and Nafion-coated
114 پاییز 1398 |شماره سوم | سال ششم
TiO2,” Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 302, 261-268, 2007.
[42] Sh. Sohrabnezhad, A. Pourahmad, R.
Rakhshaee, A. Radaee, Heidarian, “Catalytic
reduction of methylene blue by sulfide ions in the
presence of nanoAlMCM-41 material,”
Superlattices and Microstructures, 47, 411-421,
2010.
[43] Y. Li, J. Hu, G. Liu, G. Zhang, H. Zou, J. Shi,
“Amylose-directed synthesis of CuS composite
nanowires and microspheres,” Carbohydrate
Polymers, 92, 555-563, 2013.