تاثیر لایه های انتقال دهنده‌ی حفره PTAA و PEDOT:PSS بر مورفولوژی و عملکرد در سلول خورشیدی پروسکایتی مسطح معکوس

نویسندگان

1 گروه اتمی و مولکولی، دانشکده فیزیک، دانشگاه یزد، یزد

2 گروه شیمی، دانشگاه آزاد اسالمی واحد یزد، یزد

چکیده

در این پژوهش، از ساختار سلول خورشیدی پروسکایتی مسطح معکوس به دلیل داشتن ویژگیهای برجسته از جمله، ساخت در دمای پایین و هزینه ساخت پایین، استفاده شده است، اثر دو لایه‌ی انتقال‌دهنده حفره PDOT:PSS و PTAA به عنوان لایه‌ی زیرین پروسکایت بر مورفولوژی لایه پروسکایت و پارامترهای موثر بر عملکرد سلول خورشیدی Jsc, Voc, FF, PCE بررسی شد. تصاویر SEM و MAF نشان داد، مورفولوژی مناسب و پوشانندگی بالای فیلم پروسکایت با لایه‌ی PTAA در مقایسه با فیلم پروسکایت با لایه‌ی PEDOT:PSS، سبب افزایش جذب بیشتر نور و بهبود کارایی در سلول‌ خورشیدی پروسکایت بر پایه PTAA شد. بطوریکه بازدهی آنها به 37/11 رسید در حالی‌ که بیشینه‌ی بازدهی بر سلول خورشیدی مبتنی بر PDOT:PSS، 23/9 است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Hole transportlayerPTAA andPEDOT:PSS on the Morphology andEfficiency in Inverted Planer Perovskiet Cell Solar Architecture

نویسندگان [English]

  • Z. Safari 1
  • M. Borhani Zarandi 1
  • M. Nateghi 2
1 Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd
2 Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd
چکیده [English]

In this study, the structure of the inverted planer solar cell was used because of its prominent features, such as low temperature construction and low cost construction, the effect of two layers of PDOT:PSS and PTAA as the underlying perovskite on the morphology perovskite layer and parameters affecting solar cell performance Jsc, Voc, FF, PCE were investigated. SEM and AFM images showed that Proper morphology and high coverage of perovskite film with PTAA compared to perovskite film with PEDOT: PSS resulted in increased light absorption and efficiency in perovskite solar cell with PTAA. Their yields reached 11.37, while the maximum PDOT: PSS-based solar cell efficiency was 9.23.
 

کلیدواژه‌ها [English]

  • Solar cell
  • Perovskite
  • Hole transport layer
  • Inverted Planer structure
  • performance
[1] Anaraki, E.H., et al., “Highly efficient and
stable planar perovskite solar cells by
solution-processed tin oxide,” Energy &
Environmental Science, 9, 3128-3134,
2016.
[2] Zuo, C., et al., “Advances in perovskite
solar cells,” Advanced Science, 3, 1500324,
2016.
[3] Correa-Baena, J.-P., et al., “The rapid
evolution of highly efficient perovskite
solar cells,” Energy & Environmental
Science, 10, 710-727, 2017.
[4] Safari, Z., M.B. Zarandi, and M.R. Nateghi,
“Improved environmental stability of HTM
free perovskite solar cells by a modified
deposition route,” Chemical Papers, 1-12,
2019.
[5] Troughton, J., et al., “Highly efficient,
flexible, indium-free perovskite solar cells
employing metallic substrates,” Journal of
Materials Chemistry A, 3, 9141-9145,
2015.
[6] Jeon, I., et al., Carbon nanotubes versus
graphene as flexible transparent electrodes
in inverted perovskite solar cells,” The
85 پاییز 1398 |شماره سوم | سال ششم
journal of physical chemistry letters, 8,
5395-5401, 2017.
[7] Wu, M.-C., et al., “Enhanced Photovoltaic
Performance of Perovskite Solar Cells by
Tuning Alkaline Earth Metal-Doped
Perovskite-Structured Absorber and MetalDoped TiO2 Hole Blocking Layer,” ACS
Applied Energy Materials, 1, 4849-4859,
2018.
[8] Susrutha, B., L. Giribabu, and S.P. Singh,
“Recent advances in flexible perovskite
solar cells,” Chemical communications, 51,
14696-14707, 2015.
[9] Yang, Y., “Device architecture and
characterization of organic and hybrid
perovskite photovoltaic. 2015, UCLA.
[10]. Lee, M.M., et al., “Efficient hybrid solar
cells based on meso-superstructured
organometal halide perovskites,” Science,
338, p. 643-647, 2012.
[11] Liu, M., M.B. Johnston, and H.J. Snaith,
“Efficient planar heterojunction perovskite
solar cells by vapour deposition,” Nature,
501, 395, 2013.
[12] Heo, J.H., et al., “Hysteresis-less inverted
CH 3 NH 3 PbI 3 planar perovskite hybrid
solar cells with 18.1% power conversion
efficiency,” Energy & Environmental
Science, 8, 1602-1608, 2015.
[13] Chatterjee, S. and A.J. Pal, “Introducing
Cu2O thin films as a hole-transport layer in
efficient planar perovskite solar cell
structures,” The Journal of Physical
Chemistry C, 120, 1428-1437, 2016.
[14] Zhou, H., et al., “Interface engineering of
highly efficient perovskite solar cells,”
Science, 345, 542-546, 2014.
[15] Kim, H.-S. and N-G. Park, “Parameters
affecting I–V hysteresis of CH3NH3PbI3
perovskite solar cells: effects of perovskite
crystal size and mesoporous TiO2 layer,”
The journal of physical chemistry letters, 5,
2927-2934, 2014.
[16] Yamada, Y., et al., “Near-band-edge optical
responses of solution-processed organic–
inorganic hybrid perovskite CH3NH3PbI3
on mesoporous TiO2 electrodes,” Applied
Physics Express, 7,032302, 2014.
[17] Zhang, H., et al., “SrCl2 Derived Perovskite
Facilitating a High Efficiency of 16% in
Hole ‐ Conductor ‐ Free Fully Printable
Mesoscopic Perovskite Solar Cells,”
Advanced Materials, 29, 1606608, 2017.
[18] Hua, Y., et al., Facile synthesis of fluorenebased hole transport materials for highly
efficient perovskite solar cells and solidstate dye-sensitized solar cells,” Nano
Energy, 26,108-113, 2013.
[19] Yang, L., et al., “Initial light soaking
treatment enables hole transport material to
outperform spiro-OMeTAD in solid-state
dye-sensitized solar cells,” Journal of the
American Chemical Society, 135, 7378-
7385, 2013.
[20] Meng, L., et al., “Recent advances in the
inverted planar structure of perovskite solar
cells,” Accounts of chemical research, 49,
155-165, 2015.
[21] Wu, C.-G., et al., “High efficiency stable
inverted perovskite solar cells without
current hysteresis,” Energy &
Environmental Science, 8, 2725-2733,
2015.
[22] Fu, F., et al., “High-efficiency inverted
semi-transparent planar perovskite solar
cells in substrate configuration,” Nat.
Energy, 2, 16190, 2016.
[23] Hu, L., et al., “Sequential deposition of
CH3NH3PbI3 on planar NiO film for
efficient planar perovskite solar cells,” Acs
Photonics, 1, 547-553, 2014.
[24] Ye, S., et al., CuSCN-based inverted planar
perovskite solar cell with an average PCE
of 15.6%,” Nano letters, 15, 3723-3728,
2015.
[28] Yan, W., et al., “Hole ‐ Transporting
Materials in Inverted Planar Perovskite
Solar Cells,” Advanced Energy Materials,
6, 1600474, 2016.
[28] Bakr, Z.H., et al., “Advances in hole
transport materials engineering for stable
and efficient perovskite solar cells,” Nano
Energy, 34, 271-305, 2017.
[27] Liu, Y., et al., “A dopant-free organic hole
transport material for efficient planar
heterojunction perovskite solar cells,”
Journal of Materials Chemistry A, 3,
11940-11947, 2015.
86 پاییز 1398 |شماره سوم | سال ششم
[28] Malinkiewicz, O., et al., “Perovskite solar
cells employing organic charge-transport
layers,” Nature Photonics, 8, 128, 2014.
[29] Hu, L., et al., “PEDOT: PSS monolayers to
enhance the hole extraction and stability of
perovskite solar cells,” Journal of Materials
Chemistry A, 6, 16583-1658, 2018.
[30] Saliba, M., et al., “How to Make over 20%
Efficient Perovskite Solar Cells in Regular
(n–i–p) and Inverted (p–i–n)
Architectures,” Chemistry of Materials, 30,
4193-4201, 2018.
[31] Nia, N.Y., et al., “High ‐ efficiency
perovskite solar cell based on poly (3 ‐
hexylthiophene): influence of molecular
weight and mesoscopic scaffold layer,”
ChemSusChem, 10, 3854-3860, 2017.
[32] Ko, Y., et al., “Investigation of holetransporting poly (triarylamine) on
aggregation and charge transport for
hysteresisless scalable planar perovskite
solar cells,” ACS applied materials &
interfaces, 10, 11633-11641, 2018.
[33] Vivo, P., J. Salunke, and A. Priimagi,
“Hole-transporting materials for printable
perovskite solar cells,” Materials, 10, 1087,
2017.
[34] Duong, T., et al. “Impact of Light on the
Thermal Stability of Perovskite Solar Cells
and Development of Stable Semitransparent Cells,” in 2018 IEEE 7th World
Conference on Photovoltaic Energy
Conversion (WCPEC)(A Joint Conference
of 45th IEEE PVSC, 28th PVSEC & 34th
EU PVSEC), 2018.
[35] Zhao, C., et al., “Revealing underlying
processes involved in light soaking effects
and hysteresis phenomena in perovskite
solar cells,” Advanced Energy Materials, 5,
1500279, 2015.
[36] Xiong, J., et al., “Efficient and nonhysteresis CH3NH3PbI3/PCBM planar
heterojunction solar cells,” Organic
Electronics, 24, 106-112, 2015.
[37] Wang, Q., et al., “Large fill-factor bilayer
iodine perovskite solar cells fabricated by a
low-temperature solution-process,” Energy
& Environmental Science, 7, 2359-2365,
2014.
[38] Zadeh, N.J., M.B. Zarandi, and M.R.
Nateghi, “Effect of crystallization strategies
on CH3NH3PbI3 perovskite layer
deposited by spin coating method:
Dependence of photovoltaic performance
on morphology evolution,” Thin Solid
Films 660, 65-74, 2018.