طراحی حسگر ملکول های زیستی بر مبنای پلاسمون های سطحی ایجاد شده در گریتنیگ گرافن-طلا و بررسی اثر هندسه گریتینگ بر حساسیت

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه خلیج فارس، شهر بوشهر، استان بوشهر

چکیده

به دلیل اهمیت روزافزون حسگرها در تشخیص زودهنگام بیماری‌ها، نیاز به حسگرهای زیستی با کارایی بالا یکی از اهداف محققان است. در این مقاله ساختاری متشکل از گریتینگ گرافن-طلا، که پلاسمون‌های قوی را در ناحیه فروسرخ نزدیک تشکیل داده برای آشکارسازی تغییرات ضریب‌شکستو درنتیجه غلظت بعضی مواد زیستی و به‌طورکلی تمام موادی با بازه ضریب شکست 000.1 تا 006.1 پیشنهاد داده‌شده است. حساسیت و کیفیت حسگر پیشنهادی مورد محاسبه قرار گرفته‌شده و اثرات پارامترهای ساختاری و ویژگی‌های نور فرودی بر روی این فاکتورها موردبررسی قرارگرفته شده است. بهترین نتیجه برای مواد با ضریب شکست 1.100 با ضریب کیفیت 9750 حاصل شده است. همچنین امکان سنجش برخی از مولکول‌های زیستی با ظرفیت شناسایی توسط این حسگر مانند آب، گلوکز، MDCK و خون با تغییرات ضریب‌شکست 001.0 بررسی شده است که مقدار کیفیت بالای 6000 برای این مواد بدست آمده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Desighning aBiosensorBased on Surface Plasmons Generated inGraphene Gold Grating and Study the Grating GeometryEffects on Sensitivity

نویسندگان [English]

  • Z .sadeghi
  • H .shirkani
Department of physics, Faculty of science, Persian Gulf University, Bushehr
چکیده [English]

Due to emergency need in early diagnosis of illnesses, the need for high performance biosensors is one of the researchers´ goals. In this paper, a structure consisting of graphene-gold grating, which formed strong plasmons in the near infrared region, was proposed to detect the refractive indexes´ changes and consequently the concentration biomolecule and, in general, all materials with a refractive index of 1.000-1.600. Sensitivity and quality factor of the proposed sensor have been calculated and the effects of structural parameters and incident light characteristics on these factors have been considered. The best result has been obtained for materials with 1.100 refractive index with 9750 quality factor. Also, the possibility of detection for some biological molecules with this sensor, such as water, glucose, MDCK and blood, with a refractive index variation of 1.000 to 1.600 has been investigated which the quality factors for these molecules have been achieved upper than 6000.

کلیدواژه‌ها [English]

  • Biosensor
  • Optical Sensor
  • Surface plasmon
  • Graphene
[1] Minamiki, T., Minami, T., Kurita, R., Niwa, O.,
Wakida, S. I., Fukuda, K., ... & Tokito, S. Accurate
and reproducible detection of proteins in water
using an extended-gate type organic transistor
biosensor. Applied Physics Letters, 104(24),
243703, 2014.
[2] Matsui, J., Akamatsu, K., Hara, N., Miyoshi,
D., Nawafune, H., Tamaki, K., & Sugimoto, N.
SPR sensor chip for detection of small molecules
using molecularly imprinted polymer with
embedded gold nanoparticles. Analytical
Chemistry, 77(13), 4282-4285, 2005.
[3] Liang, W., Huang, Y., Xu, Y., Lee, R. K., &
Yariv, A. Highly sensitive fiber Bragg grating
refractive index sensors. Applied physics
letters, 86(15), 151122, 2005.
[4] Velázquez-González, J. S., MonzónHernández, D., Moreno-Hernández, D., MartínezPiñón, F., & Hernández-Romano, I. Simultaneous
measurement of refractive index and temperature
using a SPR-based fiber optic sensor. Sensors and
Actuators B: Chemical, 242, 912-920, 2017.
[5] Cho, N. H., Shaw, J. E., Karuranga, S., Huang,
Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., &
Malanda, B. IDF Diabetes Atlas: Global estimates
of diabetes prevalence for 2017 and projections for
2045. Diabetes research and clinical practice, 138,
271-281, 2018.
[6] Fleming, W. J., Howarth, D. S., & Eddy, D. S.
Sensor for on-vehicle detection of engine exhaust
gas composition. SAE Transactions, 1969-1984,
1973.
[7] Wolfbeis, O. S. Fiber-optic chemical sensors
and biosensors. Analytical chemistry, 80(12),
4269-4283, 2008.
[8] Brecht, A., & Gauglitz, G. Optical probes and
transducers. Biosensors and Bioelectronics, 10(9-
10), 923-936, 1995.
[9] Gauglitz, G. Opto‐chemical and opto‐immuno
sensors. Sensors update, 1(1), 1-48, 1996.
[10] Homola, J., Yee, S. S., & Gauglitz, G. Surface
plasmon resonance sensors. Sensors and Actuators
B: Chemical, 54(1-2), 3-15, 1999.
[11] Luo, X., et al., Plasmons in graphene: recent
progress and applications. 74(11): p. 351-376,
2013.
[12] Bruna, M., & Borini, S. Optical constants of
graphene layers in the visible range. Applied
Physics Letters, 94(3), 031901, 2009.
[13] Chang, H., & Wu, H. Graphene‐based
nanomaterials: Synthesis, properties, and optical
and optoelectronic applications. Advanced
Functional Materials, 23(16), 1984-1997, 2013.
50 پاییز 1398 |شماره سوم | سال ششم
[14] Chen, J., Badioli, M., Alonso-González, P.,
Thongrattanasiri, S., Huth, F., Osmond, J & Elorza,
A.Z. Optical nano-imaging of gate-tunable
graphene plasmons. Nature, 487(7405), 77, 2012.
[15] Garg, R., Elmas, S., Nann, T., & Andersson,
M. R. Deposition methods of graphene as electrode
material for organic solar cells. Advanced Energy
Materials, 7(10), 1601393, 2017.
[16] Bolotin, K. I., Sikes, K.J., Jiang, Z., Klima,
M., Fudenberg, G., Hone, J & Stormer, H.L.
Ultrahigh electron mobility in suspended
graphene. Solid State Communications, 146(9-10),
351-355, 2008.
[17] Falkovsky, L.A. Optical properties of
graphene. In Journal of Physics: Conference
Series (Vol. 129, No. 1, p. 012004). IOP
Publishing, 2008.
[18] Neto, A.C., Guinea, F., Peres, N. M.,
Novoselov, K.S., & Geim, A. K. The electronic
properties of graphene. Reviews of modern
physics, 81(1), 109, 2009.
[19] Chen, Y., Dong, J., Liu, T., Zhu, Q., & Chen,
W. Refractive index sensing performance analysis
of photonic crystal containing graphene based on
optical Tamm state. Modern Physics Letters
B, 30(04), 1650030, 2016.
[20] Yoon, H. J., Yang, J.H., Zhou, Z., Yang, S.S.,
& Cheng, M. M. C. Carbon dioxide gas sensor
using a graphene sheet. Sensors and Actuators B:
Chemical, 157(1), 310-313, 2011.
[21] Wu, L., Chu, H. S., Koh, W.S., & Li, E.P.
Highly sensitive graphene biosensors based on
surface plasmon resonance. Optics express, 18(14),
14395-14400, 2010.
[22] Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y.,
Wu, L&Sun, M. Reduced graphene oxide
electrically contacted graphene sensor for highly
sensitive nitric oxide detection. ACS nano, 5(9),
6955-6961, 2011.
[23] Kulkarni, G.S., Reddy, K., Zhong, Z., & Fan,
X. Graphene nanoelectronic heterodyne sensor for
rapid and sensitive vapour detection. Nature
communications, 5, 4376, 2014.
[24] Fei, Z., Rodin, A. S., Andreev, G.O., Bao, W.,
McLeod, A. S., Wagner, M., ... & Fogler, M. M.
Gate-tuning of graphene plasmons revealed by
infrared nano-imaging. Nature, 487(7405), 82,
2012.
[25] Kretschmann, E. Die bestimmung optischer
konstanten von metallen durch anregung von
oberflächenplasmaschwingungen. Zeitschrift für
Physik A Hadrons and nuclei, 241(4), 313-324,
1971.
[26] Chen, Y., Li, X., Zhou, H., Xie, Q., Hong, X.,
& Geng, Y. Effects of incident light modes and
non-uniform sensing layers on fiber-optic sensors
based on surface plasmon
resonance. Plasmonics, 12(3), 707-715, 2017.
[27] Diaz-Valencia, B.F., Mejía-Salazar, J. R.,
Oliveira Jr, O. N., Porras-Montenegro, N., &
Albella, P. Enhanced transverse magneto-optical
Kerr effect in magnetoplasmonic crystals for the
design of highly sensitive plasmonic (bio) sensing
platforms. ACS omega, 2(11), 7682-7685, 2017.
[28] Li, R., Wu, D., Liu, Y., Yu, L., Yu, Z., & Ye,
H. Infrared plasmonic refractive index sensor with
ultra-high figure of merit based on the optimized
all-metal grating. Nanoscale research letters, 12(1),
1, 2017.
51 پاییز 1398 |شماره سوم | سال ششم
[29] Rowe, D. J., Smith, D., & Wilkinson, J. S.
Complex refractive index spectra of whole blood
and aqueous solutions of anticoagulants, analgesics
and buffers in the mid-infrared. Scientific
reports, 7(1), 7356, 2017.
[30] Lirtsman, V., Golosovsky, M., & Davidov, D.
Infrared surface plasmon resonance technique for
biological studies. Journal of Applied
Physics, 103(1), 014702, 2008.
[31] Yashunsky, V., Lirtsman, V., Golosovsky, M.,
Davidov, D., & Aroeti, B. Real-time monitoring of
epithelial cell-cell and cell-substrate interactions by
infrared surface plasmon
spectroscopy. Biophysical journal, 99(12), 4028-
4036, 2010.
[32] Hale, G.M., & Querry, M.R. Optical constants
of water in the 200-nm to 200-μm wavelength
region. Applied optics, 12(3), 555-563, 1973.