اثر روش تولید بر ساختار، خواص مغناطیسی و الکتریکی فریت نانوساختار لیتیم

نویسندگان

گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این پژوهش، فریت نانوساختار لیتیم با ترکیب Li0.5Fe2.5O4 به سه روش سل-ژل، سنتز خود احتراقی و هیدروترمال تولید گردید و اثر روش تولید بر ساختار و خواص مورد بررسی قرار گرفت. برمبنای نتایج آزمون پراش پرتو ایکسXRD، ساختار کریستالی مکعبی با گروه فضایی P4332 برای فریت لیتیم به روش سل-ژل و ساختار مکعبی با گروه فضایی Fd3m برای فریت لیتیم به روش‌های سنتز خود احتراقی و روش هیدروترمال به دست آمد. مشاهده شد که در فریت لیتیم تولید شده به روش هیدروترمال، برخلاف دو روش قبلی، برخی ناخالصی ها حضور دارد. با استفاده از میکروسکوپ الکترونی روبشی نشر میدان FESEM، ریزساختار پودرهای تولیدی بررسی شد. کلوخه‌های صفحه‌ای و اسفنجی شکل به ترتیب در فریت تولید شده به روش سل-ژل و سنتز خود احتراقی مشاهده شد. بررسی رفتار مغناطیسی نشان داد که فریت لیتیم تولیدی به روش سنتز خود احتراقی بیشترین مقدار مغناطش اشباع emu/g 57 و کمترین اندازۀ بلورک nm 26 را دارا است. نتایج همچنین نشان داد که شاخصۀ ثابت دی الکتریک و هدایت الکتریکی جریان متناوب در پودر تولید شده به روش سنتز احتراقی در تمامی بسامدهای اندازه‌گیری شده به طور قابل توجهی مقدار بالاتری را نسبت به پودرهای تولیدی به روش سل-ژل دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

TheEffect of Synthesis Method on the Structural, Magnetic andElectrical Properties of NanostructuredLi Ferrite

نویسندگان [English]

  • R. Baladi
  • Kh. Gheisari
  • N. Borhan
Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this study, nanocrystalline Li0.5Fe2.5O4 ferrite powders have been prepared by sol-gel, auto-combustion and hydrothermal synthesis methods. The influence of synthesis method on the structure and the properties has been investigated in details. Based on the X-ray diffraction XRD data, the cubic crystal structure with P4332 space group is obtained for Li ferrite produced by sol-gel method, while P4332 space group is observed for the powders prepared by auto-combustion and hydrothermal methods. In addition, a significant amount of impurity is detected for the hydrothermally synthesized powders which is contrary to that observed by two other methods. The microstructure of the produced powder has been investigated by a field emission scanning electron microscope FESEM. A plate-like and spongy morphology with numerous porosity is observed in the Li ferrite powder clusters produced by sol-gel and auto-combustion synthesis methods, respectively. According to the magnetic measurements, the highest saturation magnetization 57 emu/g and the lowest crystallite size 26 nm is detected for the auto-combustion powders. The results also show that dielectric constant and AC electrical conductivity of the auto-combustion Li ferrite is moderately higher that those recorded for the the sol-gel Li ferrite in the all measured frequencies.

کلیدواژه‌ها [English]

  • Sol-gel
  • Hydrothermal
  • Auto-combustion
  • Li ferrite
[1] M.A. Amer, T. M. Meaz, A.G. Mostafa, H.F. ElGhazally, “Structural and physical properties of the
nano-crystalline Al-substituted Cr–Cu ferrite.” Journal
of magnetism and magnetic materials, 343, 286-292,
2013.
[2] G. Rekha, R. Tholkappiyan, K. Vishista, F. Hamed,
“Systematic study on surface and magnetostructural
changes in Mn-substituted dysprosium ferrite by
hydrothermal method.” Applied surface science, 385,
171-181, 2016.
[3] D. H.K. Reddy, Y. S. Yun, “Spinel ferrite magnetic
adsorbents: alternative future materials for water
19 پاییز 1398 |شماره سوم |سال ششم
purification,” Coordination chemistry reviews, 315, 90-
111, 2016.
[4] N. Dhananjaya, H. Nagabhushana, B.M.
Nagabhushana, B. Rudraswamy, C. Shivakumara, R. P.
S. Chakradhar, “Effect of Li+-ion on enhancement of
photoluminescence in Gd2O3: Eu3+ nanophosphors
prepared by combustion technique,” Journal of alloys
and compounds, 509(5), 2368-2374, 2011.
[5] Y.M. Abbas, S.A. Mansour, M. H. Ibrahim, S.E.
Ali, Microstructure characterization and cation
distribution of nanocrystalline cobalt ferrite. Journal of
magnetism and magnetic materials, 323(22), 2748-
2756, 2011.
[6] N.Y. Mostafa, Z.I. Zaki, Z.K. Heiba, “Structural and
magnetic properties of cadmium substituted manganese
ferrites prepared by hydrothermal route,” Journal of
magnetism and magnetic materials, 329, 71-76, 2013.
[7] A.T. Pathan, A.M. Shaikh, “Dielectric properties of
Co-substituted Li-Ni-Zn nanostructured ferrites
prepared through chemical route,” International Journal
of Computer Applications, 45, 0975-8887, 2012.
[8] L. Z. Li, Z. Yu, Z. W. Lan, K. Sun, C. J. Wu,
“Structural and magnetic properties of Mg-substituted
NiZnCo ferrite nanopowders.” Ceramics international,
40(9), 13917-13921, 2014.
[9] R. Valenzuela, “Magnetic ceramics” (Vol. 4).
Cambridge University Press, 2005.
[10] A. Goldman, “Modern ferrite technology,” Second
Edition ed., USA, Springer, 2006.
[11] M. Srivastava, A.K. Ojha, S. Chaubey, P.K.
Sharma, A. C. Pandey, “Influence of pH on structural
morphology and magnetic properties of ordered phase
cobalt doped lithium ferrites nanoparticles synthesized
by sol–gel method,” Materials science and engineering:
B, 175(1), 14-21, 2010.
[12] V. Chlan, “Hyperfine interactions in ferrites with
spinel structure,” Ph.D. Thesis, Charles University,
Prague , 2010.
[13] N. Singh Singh, A. Agarwal, S. Sanghi, “Dielectric
relaxation, conductivity behavior and magnetic
properties of Mg substituted Zn–Li ferrites,” Current
applied physics, 11(3), 783-789, 2011.
[14] M.A. Iqbal, M.U. Islam, I. Ali, I. Sadiq, I. Ali,
“High frequency dielectric properties of Eu+ 3-
substituted Li–Mg ferrites synthesized by sol–gel autocombustion method,” Journal of alloys and compounds,
586, 404-410, 2014.
[15] R. Sharma, P. Thakur, M. Kumar, N. Thakur, N, N.
S. Negi, P. Sharma, V. Sharma, “Improvement in
magnetic behaviour of cobalt doped magnesium zinc
nano-ferrites via co-precipitation route,” Journal of
alloys and compounds, 684, 569-581, 2016.
[16] M. Zahraei, A. Monshi, M. del Puerto Morales, D.
Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar,
“Hydrothermal synthesis of fine stabilized
superparamagnetic nanoparticles of Zn 2+ substituted
manganese ferrite,” Journal of magnetism and magnetic
materials, 393, 429-436, 2015.
[17] S.K, Durrani, S. Naz, M. Mehmood, M. Nadeem,
M. Siddique, “Structural, impedance and Mössbauer
studies of magnesium ferrite synthesized via sol–gel
auto-combustion process.” Journal of saudi chemical
society,) 21, 899–910, 2017.
[18] A. Hajalilou, S.A. Mazlan, K. Shameli, “A
comparative study of different concentrations of pure
Zn powder effects on synthesis, structure, magnetic and
microwave-absorbing properties in mechanicallyalloyed Ni–Zn ferrite,” Journal of physics and
chemistry of solids, 96, 49-59, 2016.
[19] P.K. Roy, J. Bera, “Effect of Mg substitution on
electromagnetic properties of (Ni 0.25 Cu 0.20 Zn 0.55)
Fe2O4 ferrite prepared by auto combustion method,”
Journal of magnetism and magnetic materials, 298(1),
38-42, 2006.
[20] A. Kumar, N, Yadav, D.S. Rana, P. Kumar, M.
Arora, R. P. Pant, “Structural and magnetic studies of
the nickel doped CoFe2O4 ferrite nanoparticles
synthesized by the chemical co-precipitation method,”
Journal of magnetism and magnetic materials, 394, 379-
384, 2015.
[21] L. Yao, Y. Xi, G. Xi, Y. Feng, “Synthesis of
cobalt ferrite with enhanced magnetostriction properties
by the sol− gel− hydrothermal route using spent Li-ion
battery,” Journal of alloys and compounds, 680, 73-79,
2016.
[22] H. Huilia, B. Grindia, , A. Koukic, G.Viaub, L. B.
Tahara, “Effect of sintering conditions on the structural,
electrical, and magnetic properties of nanosized
Co0.2Ni0.3Zn0.5Fe2O4,” Ceramics international, 14,
6212-6225, 2015.
[23] R. P. Patil, S. B. Patil, B. V. Jadhav, S. D. Delekar,
P. P. Hankare, “Structural and magnetic properties of
20 پاییز 1398 |شماره سوم |سال ششم
Co substituted Li0.5Fe2.5O4,” Journal of magnetism
and magnetic materials, 401, 870-874, 2016.
[24] G. Aravind, B. Nehru, R. V. Kumar, D. Ravinder, “
Dielectric properties of nano crystalline cobalt
substituted lithium ferrites by citrate-gel auto
combustion method”, Materials today: proceedings,
3(6), 1423-1428, 2016.
[25] V. S. Sawant, K. Y. Rajpure, “The effect of Co
substitution on the structural and magnetic properties of
lithium ferrite synthesized by an autocombustion
method”, Journal of magnetism and magnetic materials,
382, 152-157, 2015.
[26] C. Ramesh, K. Maniysundar, S. Selvanandan,
“Structural and magnetic study on Al substituted Mg-Zn
mixed ferrite powders prepared by Sol-Gel method”,
Materials today: proceedings, 3(6), 1363-1369, 2016.
[27] R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S.
Negi, P. Sharma, V. Sharma, “Improvement in
magnetic behaviour of cobalt doped magnesium zinc
nano-ferrites via Co-precipitation route,” 684, 569-581,
2016.
[28] I. Szczygieł, K. Winiarska, A. Bienko, K. Suracka,
D. Gaworska-Koniarek, “The effect of the sol – gel
autocombustion synthesis conditions on the Mn –Zn
ferrite magnetic properties,” Journal of alloys and
compounds, 604, 1-7, 2014.
[29] N. Borhan, K. Gheisari, “Structural and magnetic
properties of nanocrystalline lithium–zinc ferrite
synthesized by microwave-induced Glycine–Nitrate
process,” Journal of superconductivity and novel
magnetism, 27, 483–1490, 2014.
[30] Z. Maleknejad, K. Gheisari, A.H Raouf,
“Structure, microstructure, magnetic, electromagnetic,
and dielectric properties of nanostructured Mn–Zn
ferrite synthesized by microwave-induced urea–nitrate
process,” Journal of superconductivity and novel
Magnetism, 29(10), 2523-2534, 2016.
[31] L. Z. Li, Z. Yu, Z. W. Lan, K. Sun, C.J. Wu, “
Structural and magnetic properties of Mg-substituted
NiZnCo ferrite nanopowders,” Ceramics international,
40(9), 13917-13921, 2014.
[32] M. Manjurul Haque, M. Huq, M.A. Hakim, “Effect
of Zn2+ substitution on the magnetic properties of Mg1-
xZnxFe2O4 ferrite,” Physica B, 404, 3915-3921, 2009
[33] N. Borhan, K. Gheisari, M. Z. Shoushtari, “
Dielectric properties of nanocrystalline Zn-doped
lithium ferrites synthesized by microwave-induced
glycine–nitrate process,” Journal of superconductivity
and novel magnetism, 29(1), 145-151, 2016.
[34] G. Aravind, D. Ravinder, V. Nathanial, “Structural
and electrical properties of Li–Ni nanoferrites
synthesised by citrate gel autocombustion method,”
Physics research international, 2014, 1-12, 2014.
[35] K. Verma, A. Kumar, D. Varshney, “Dielectric
relaxation behaviour of AxCo1 − xFe2O4 (A = Zn, Mg)
mixed ferrites.” Journal of alloys and compounds, 526,
91–97, 2012.
[36] Kh. Gheisari, Sh. Shahriari S. Javadpour,
“Structural evolution and magnetic properties of
nanocrystalline 50 Permalloy powders prepared by
mechanical alloying,” Journal of alloys and compounds,
574, 71–82, 2013.
[37] V.F. Lvovich, “Impedance spectroscopy with
application to electrochemical and dielectric
phenomena,” John Wiley & Sons, Inc., Hoboken, New
Jersey, 2012.