ساخت ساده و دو مرحله ای نقاط کوانتومی کادمیم تلوراید با نورتابی بالا : بررسی اثر نور ماورای بنفش بر نورتابی نقاط کوانتومی

نویسندگان

1 دانشگاه آزاد اسلامی واحد یزد - دانشکده مهندسی نساجی و پلیمر

2 دانشگاه یزد - دانشکده فیزیک

چکیده

نقاط کوانتومی کادمیم تلوراید پوشش داده شده با تیوگلیکولیک اسید با اندازه‌های مختلف 2/7، 3 و 3/4 نانومتر به روش آّبی ساخته شدند. سپس نقاط کوانتومی تحت نور ماورای بنفش نوردهی شدند. اثر نوردهی بر خواص نوری نقاط کوانتومی به صورت نظام بند بررسی شد. بر اساس نتایج، میزان تغییر در شدت فلورسانس و محل قله با اندازه ذرات تغییر می کند. شدت قله فلورسانس نقاط کوانتومی با اندازه 3/4 نانومتر، 5/2 برابر شدت اولیه بعد از 102 ساعت نوردهی شده است. در حالیکه نقاط کوانتومی با اندازه 3 نانومتر، شدت قله به طور قابل توجهی افزایش یافته است 31 برابر بعد از 88 ساعت نوردهی. در سه نمونه، محل قله فلورسانس به سمت طول موج های کمتر جابجا شده است. نقاط کوانتومی با اندازه کمتر، جابجایی آبی بیشتری در محل قله گسیل دارد. در این مقاله، سازوکار این تغییرات در خواص نوری نقاط کوانتومی بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A simple and Two-step synthesis of highly flourescent CdTe quantum dots:Investigation of the effect of UV light on flourescence of QDs

نویسندگان [English]

  • Mohammad Reza SayedMir 1
  • Hakimeh Zare 2
  • Mohammad Esmail Yazdanshenas 1
1
2
چکیده [English]

Thioglycolic acid TGA capped CdTe quantum dots QDs of different sizes 2.7, 3 and 3.4 nm were prepared by aqueous method. Then, the fresh QDs were illuminated ultraviolet light. There by effect of lighting on optical properties of QDs were investigated systematically. It was revealed that emission spectra of QDs took a sharp change after UV illumination. ultraviolet UV light. There by effect of lighting on optical properties of QDs were investigated systematically. The results show that the magnitude of changes in the fluorescence intensity and peak position varies with the particle sizes. The fluorescence peaks maximum intensity of quantum dots with a size of 3.4 nm; 5.2 times increases after 102 h of UV illumination. Whereas QDs with a size of 3 nm, peak maximum intensity considerably increases 31 times after 88 h illumination. In three instances, the fluorescence peak position is shifted toward the lower wavelengths. As size of QDs decreases, the emission peak position shifts more towards lower wavelengths under irradiation is greater. In this paper, the mechanism of these changes of the optical properties of the QDs is studied.

کلیدواژه‌ها [English]

  • Quantum dots
  • UV irradiation
  • Effect size
  • Fluorescence
  • Photo etching
[1] M. Faraday, "The bakerian lecture:
Experimental relation of gold (and other metals) to
light". Philos. Trans. R. Soc. Lond, 147, 145-
181,1857.
[2] M. Giersig, P. Mulvaney, "Preparation of
ordered colloid monolayers by electrophoretic
deposition. Langmuir",9, 3408-3413, 1993.
[3] M. Haruta, T. Kobayashi, H. Sano, N. Yamada,
"Novel Gold Catalysts for the Oxidation of Carbon
Monoxide at a Temperature far below 0 °C", Chem.
Lett, 405-406, 1987.
[4] A. Henglein, "Radiolytic Preparation of
Ultrafine Colloidal Gold Particles in Aqueous
PolutioS:  Optical Spectrum, Controlled Growth,
and Some Chemical Reactions", Langmuir, 15,
6738, 1999.
]5 ]مریم فرحناک ضرابی ، زهرا صفاری، عظیم اکبرزاده، "تهیه
و کاربردهای زیستی، کاتالیستی و پزشکی نانوذره های طال"،
مجله تازه های بیوتکنولوژی سلولی-مولکولی، ، 4،13 ، 9-17،
.1392
[6] X.D. Zhang, D. Wu, X. Shen, J. Chen, Y.M.
Sun, P.X. Liu, X.J. Liang, “Pize-dependent
radiosensitization of PEG-coated gold nanoparticles
for caScer radiatioS therapy”, Biomaterials, 33,
27,6408-19, 2012.
[7] J.Y. Wang, J. Chen, J. Yang, H. Wang, X. Shen,
Y.m. PuS, m. Guo, X.S. ZhaSg, “Effects of surface
charges of gold nanoclusters on long-term in vivo
biodistribution, toxicity, and cancer radiation
therapy”, International Journal of
Nanomedicine, 11,27 ,3475-3485, 2016.
[8] N. Ma, F.G Wu, X. Zhang, Y.M. Jiang, H.R. Jia,
H.Y. Wang, Y.H. Li, P. Liu, N. Gu, Z. Chen,
“Phape-Dependent Radiosensitization Effect of
Gold Nanostructures in Cancer Radiotherapy:
Comparison of Gold Nanoparticles, Nanospikes,
aSd MaSorods” ACS Appl Mater Interfaces, 9,15,
13037-13048, 2017.
[9]M.A. Sirotkina, V.V. Elagin, M.V.
Shirmanova, M.L. Bugrova, L.B. Snopova,
V.A. Kamensky, V.A. Nadtochenko, N.N.
Denisov, E.V. Zagaynova, ”OCT-guided laser
hyperthermia with passively tumor-targeted
gold SaSoparticles” J Biophotonics, 3, 718-27,
2010.
[10] A. Shiotani , Y. Akiyama, T. Kawano,Y.
Niidome, T. Mori, Y. Katayama, T. MiidoMe,”
Active accumulation of gold nanorods in tumor in
response to near-iSfrared laser irradiatioS”,
Bioconjug Chem., 17,21,11,2049-54, 2010.
[11] Z. Zdrojewicz, m. /aracki, B. Bugaj, S.
SypSo, K. Cabała, "medical applicatioSs of
SaSotechSology", Sostȩpy higieny i MedycySy
doświadczalSej, 69,1196, 2015.
[12] G. Frens, "Controlled Nucleation for the
Regulation of the Particle Size in Monodisperse
Gold Suspensions", Nature: Phys. Sci, 241, 20-22,
1973.
[13] B. Shi, Y.K.Shin, A.A. Hassanali, S.J.
Singer, "Biomolecules at the amorphous
silica/water interface: Binding and fluorescence
anisotropy of peptides", Colloids Surfaces B
Biointerfaces,157, 83–92, 2017.
87
[14] A. Vallee, V. Humblot, C.M. Pradier,
"Peptide Interactions with Metal and Oxide
Surfaces", Acc. Chem. Res, 43, 10, 1297–
1306, 2010.
[15] P.L Kapitza, "Heat transfer and
superfluidity of helium II", Phys. Rev, 60, 4,
354–355, 1941.
[16] Computational Molecular
Dynamics:Chalenges, Methods, Ideas.2014.
[17] S. Merabia, S. Shenogin, L. Joly, P.
Kebllnski, J. L. Barrat, “ Heat transfer from
nanoparticles: Acorresponding state aSalysis”,
PNAS, 106, 36, 15113-15118, 2009.
[18] H. Hu, Y. Sun, "Effect of nanopatterns on
Kapitza resistance at a water-gold interface
during boiling: A molecular dynamics study" J.
Appl. Phys, 112, 5, 2012.
[19] A. Rajabpour, R. Seif, S. Arabha, M.M.
Heyhat, S. Merabia, A. Hassanali, "Thermal
transport at a nanoparticle-water interface: A
molecular dynamics and continuum modeling
study", J. Chem. Phys, 150, 11-20, 2019.
[20] B.J. Alder, T.E Wainwright, “Ptudies in
molecular dynamics. I. General Method”, The
Journal of Chemical Physics, 31, 2, 459-466, 1959.
[21] A.I Jewett, Z. Zhuang, J.E. Shea,
"Moltemplate a coarse-grained model assembly
tool" Biophysical Journal, 104, 2, 2013, 169, 2013.
[22] M. Nikzad, A.R. Azimian, M. Rezaei, S.
Nikzad, "Water liquid-vapor interface subjected to
various electric fields: A molecular dynamic study",
The Journal of Chemical Physics, 147, 20, 204701-
7, 2017.
[23] R.W. Hockney, J.W. Eastwood, "Computer
simulation using particles", crc Press, 1988.
[24] U. Essmann, L. Perera, M.L Berkowitz, T.
Darden, H. Lee, "Pedersen LG. Amooth particle
mesh Ewald method" , The Journal of chemical
physics,103, 8577-8593, 1995.
[25] M.J.P Nijmeijer, C. Bruin, A.F. Bakker, J.M.J
Van Leeuwen, "Wetting and drying of an inert wall
by a fluid in a molecular-dynamics simulation",
Physical Review, 42, 10, 6052-6059, 1990.
[26] R.E. Isele-Holder, W. Mitchell, A.E. Ismail,
"Development and application of a particle-particle
particle-mesh Ewald method for dispersion
interactions", The Journal of chemical physics, 137,
17, 174107-174121, 2012.
[27] R.D. Mountain, "An internally consistent
method for the molecular dynamics simulation of
the surface tension: application to some tip4p-type
models of water", The Journal of Physical
Chemistry, 113, 2, 482-486, 2008.
[28] G. Lu, Y.Y. Duan, X.D. Wang, "Surface
tension, viscosity and rheology of water-based
nanofluids: a microscopic interaction on the
molecular level", Journal of Nanoparticle
Research, 16,112-118, 2014.
[29] P.C. Chen, P. Roy, L,Y. Chen, R.
Ravindranath, H.T. Chang, "Gold and Silver
Nanomaterial‐Based Optical Sensing Systems",
Part Part Syst Charact, 31, 917–942, 2014.
[30] M.M. Heyhat, A. Rajabpour, M. Abbasi,
S. Arabha, "Importance of Nanolayer
Formation in Nanofluid Properties: Equilibrium
Molecular Dynamic Simulations for Ag-Water
Nanofluid", J. Mol. Liq, 12, 67-782018.
[31] Y. Ma, Z. Zhang, J. Chen, K. Sääskilahti,
S. Volz, J. Chen, "Ordered water layer induced
by interfacial charge decoration leads to an
ultra-low Kapitza resistance between graphene
and water", Carbon N.Y, 135, 263–269, 2018.
[32] M. Frank, D. Drikakis, "Solid-like heat
transfer in confined liquids,” Microfluid.
Nanofluidics", 21, 9, 148, 2017.
[33] F. Römer, A. Lervik, F. Bresme,
"Nonequilibrium molecular dynamics
simulations of the thermal conductivity of
water: A systematic investigation of the SPC/E
and TIP4P/2005 models", J. Chem. Phys,
137,134-142, 2012.
[34] P. Estelle, D. Cabalerio, G. Zyla, L. Lugo,
S.M.S. Murshed, "Current trends in surface
tension and wetting behavior of nanofluids",
Renewable and Sustainable Energy Reviews,
94, 931–944, 2018.
88
[35] T. Young, Phil. Trans. R. Soc. Lond. 95,
65-71, 2006.
[36] R.A. Erb, "The wettablity of Gold", The
journal of Physical Chemistry, 14, 112-
119,1967.
[37] A. Lervik, F. Bresme, S. Kjelstrup, " Heat
transfer in soft nanoscale interfaces: the
influence of interface curvature" Soft Matter, 5,
2407-2412, 2019.
[38] Y. Wang, P. Keblinski, "Role of wetting
and nanoscale roughness on thermal
conductance at liquid-solid interface", Appl
Phys Lett, 99, 1–3, 2011.
[39] L. Xue, P. Keblinski, S.R Phillpot, S.U.S.
Choi, J.A. Eastman, "Effect of liquid layering
at the liquid-solid interface on thermal
transport", Int. J. Heat Mass Transf, 47, 4277–
4284, 2004.
[40] A. Pham, M. Barisik, B. Kim, "Pressure
dependence of Kapitza resistance at gold/water
and silicon/water interfaces", J. Chem. Phys,
139, 1–10, 2013.
[41] X. Wu, "Thermal Transport across
Surfactant Layers on Gold Nanorods in
Aqueous Solution", ACS Appl. Mater.
Interfaces, 8, 10581–10589, 2016.
[42] J. Soussi, S. Volz, B. Palpant, A.
Chalopin, "A detailed microscopic study of the
heat transfer at a water gold interface coated
with a polymer", Appl. Phys. Lett, 106, 9
,93113-93117, 2015.