تولید و مشخصه‌یابی ماده موثره نانو داروی تالیدومید به روش سنتز نامتقارن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک-نانو فیزیک- دانشگاه صنعتی اراک

2 گروه علوم پایه،دانشگاه صنعتی اراک،اراک،استان مرکزی

3 گروه فیزیک، دانشگاه صنعتی اراک، اراک

چکیده

در این پژوهش، ماده موثره­ی نانوداروی تالیدومید با استفاده از روش سنتز نامتقارن تولید شد. سنتز نامتقارن یکی از روش­های متداول در زمینه سنتز نانوداروها است. ماده موثره­ی نانو داروی تالیدومید تولید شده با آنالیز­های متفاوت مورد بررسی قرار گرفت. برای اثبات سنتز نانوداروی تولید شده ابتدا از آنالیز طیف­سنجی پراکندگی پرتوی ایکس (EDX) استفاده شد. سپس، با استفاده از طیف رزونانس مغناطیس هسته­ای هیدروژن (HNMR) و طیف سنج تبدیل فوریه فرو سرخ (FTIR) سنتز نانو داروی تالیدومید مورد مطالعه قرار گرفت. در مرحله بعدی، برای بررسی ساختار نانومتری داروی سنتز شده از میکروسکوپ الکترونی عبوری (TEM) استفاده شد. با استفاده از میکروسکوپ الکترونی عبوری ابعاد نانومتری داروی سنتز شده تایید شد. در نهایت، برای بررسی بهبود نانو داروی سنتز شده با داروی عادی زمان آزاد سازی دارو در شرایط معده انسان مورد بررسی قرار گرفت. میزان آزاد سازی داروی تالیدومید بر حسب زمان با استفاده از طیف سنج جذب مرئی- فرابنفش (UV-Vis) بررسی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and characterization of the active ingredient of nano drug thalidomide by asymmetric synthesis method

نویسندگان [English]

  • mojtaba goodarzi 1
  • K. Hedayati 2
  • ekhlas savaedi 3
1 department of physics
2 department of physics
3 department of physics, arak university of technology, arak
چکیده [English]

In this study, the active ingredient of nano drug thalidomide was produced using asymmetric synthesis method. Asymmetric synthesis is one of the common methods in the field of nano drug synthesis. The active ingredient of thalidomide nano drug produced was investigated via different analyzes. To prove the synthesis of the produced nano drug, first Energy-dispersive X-ray spectroscopy (EDX) analysis was used. Then, the synthesis of nano drug thalidomide was studied using hydrogen nucleus magnetic resonance spectroscopy (HNMR) and Fourier transform infrared spectroscopy (FTIR). In the next step, a transmission electron microscope (TEM) was used to examine the nanometer structure of the synthesized drug. The nanometer dimensions of the synthesized drug were confirmed using the transmission electron microscope. Finally, in order to evaluate the improvement of the synthesized nano drug with normal drug, the release time of the drug in human stomach conditions was investigated and the release rate of thalidomide over time was evaluated using ultraviolet-visible absorption spectrometer (UV-Vis).

کلیدواژه‌ها [English]

  • Nano drug
  • Asymmetric synthesis
  • Thalidomide
  • Active ingredient
 [1] T. Noguchi, R. Shimazawa, K. Nagasawa, Y. Hashimoto, “Thalidomide and its analogues as cyclooxygenase inhibitors” Bioorganic & medicinal chemistry letters 12(7), 1043-1046, 2002.
[2] H. P. Koch, “4 Thalidomide and Congeners as Anti-inflammatory Agents” In Progress in medicinal chemistry 22, 165-242, 1985.‏
[3] V. Günzler, “Thalidomide in Human Immunodeficiency Virus (HIV) Patients” Drug safety, 7, 116-134, 2012.   
[4] F. O. Kelsey, “Thalidomide update: Regulatory aspects” Teratology, 38, 221-226, 1988.
[5] S. K. Teo, K. E. Resztak, M. A. Scheffler, K. A. Kook, J. B. Zeldis, D. I. Stirling, S.  D. Thomas, “Thalidomide in the treatment of leprosy” Microbes and infection, 4(11), 1193-1202, 2002.
[6] B. G. M. Durie, J-L Harousseau, J. S. Miguel, J. Bladé, B. Barlogie, K. Anderson, M. Gertz, M. Dimopoulos, J. Westin, P. Sonneveld, H. Ludwig, G. Gahrton, M. Beksac, J. Crowley, A. Belch, M. Boccadaro, I. Turesson, D. Joshua, D. Vesole, R. Kyle, R. Alexanian, G. Tricot, M. Attal, G. Merlini, R. Powles, P. Richardson, K. Shimizu, P. Tosi, G. Morgan, S. V. Rajkumar, “International uniform response criteria for multiple myeloma” Leukemia, 20(9), 1467-1473, 2006.
[7] E. R. Lepper, N. F. Smith, M. C. Cox, C. D. Scripture, W. D. Figg, “Thalidomide Metabolism and Hydrolysis: Mechanisms and Implications” Current drug metabolism, 7(6), 677-685, 2006.
[8] S. K. Teo, D. I. Stirling, J. B. Zeldis, “Thalidomide as a novel therapeutic agent: new uses for an old product” Drug discovery today, 10(2), 107-114, 2005.
[9] N. Shibata, T. Yamamoto, T. Toru, “Synthesis of Thalidomide” Berlin, Heidelberg, 73-97, 2007. 
[10] M. B.  Kenyon, F. Browne, R. J. D'amato, “Effects of Thalidomide and Related Metabolites in a Mouse Corneal Model of Neovascularization” Experimental eye research, 64(6), 971-978, 1997.
[11] S. Wnendt, M. Finkam, W. Winter, J. Ossig, G. Raabe, K. Zwingenberger, “Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogues” Chirality, 8(5), 390-396, 1996.
[12] R. C. Frederickson, I. H. Slater, W. E. Dusenberry, C. R. Hewes, G. T. Jones, R. A. Moore, “A comparison of thalidomide and pentobarbital - new methods for identifying novel hypnotic drugs” Journal of Pharmacology and Experimental Therapeutics, 203(1), 240-251, 1977. [13] S. Gao, S. Wang, R. Fan, J. Hu, “Recent advances in the molecular mechanism of thalidomide teratogenicity” Biomedicine & Pharmacotherapy, 127, 110114, 2020.
[14] N. S. Abdelwahab, N. W. Ali, M. M. Zaki, S. M. Z. Sharkawi, M. M. Abdelkawy, “Simultaneous Determination of Thalidomide and Dexamethasone in Rat Plasma by Validated HPLC and HPTLC With Pharmacokinetic Study” Journal of chromatographic science, 57(2), 130-138, 2019.
[15] R. Lugano, M. Ramachandran, A. Dimberg, “Tumor angiogenesis: causes, consequences, challenges and opportunities” Cell Mol Life Sci. 77, 1745–1770, 2020.
[16] Y. Shen, S. Li, X. Wang, M. Wang, Q. Tian, J. Yang, J. Wang, B. Wang, P. Liu, J. Yang, “Tumor vasculature remolding by thalidomide increases delivery and efficacy of cisplatin” J Exp Clin Cancer Res. 38, 427, 2019.
[17] T. Saunsbury, M. Harte, C. Venda-Nova, K. Patel, T. Hodgson, “Thalidomide therapy for refractory mucosal disease: benefit and risks over 10 years” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 131(4),e115-e116, 2021.
[18] X. Wang, Y. Shen, L. MengLv, X. Zhang, J. Yang, F. Wang, J. Yang, “Thalidomide suppresses breast cancer tumor growth by inhibiting tumor-associated macrophage accumulation in breast tumor-bearing” mice. Eur J Pharm Sci. 151, 105302, 2020.
[19] Z. Zhou, W. Mao, Y. Li, C. Qi, Y. He, “Myricetin inhibits breast tumor growth and angiogenesis by regulating VEGF/VEGFR2 and p38MAPK signaling pathways” Anat Rec (Hoboken) 302, 2186–2192, 2019.
[20] J. Tian, T. Song, H. Wang, W. Wang, Z. Zhang, R. Yan, “Thalidomide alleviates bone cancer pain by down-regulating expressions of NF-kappaB and GFAP in spinal astrocytes in a mouse model” Int J Neurosci.129, 896–903, 2019.
[21] V. A. F. S. N. Mussel, M. P. Ferreira, M. B. F. Marques, M. I. Yoshida, M. R. Almeida, B. L. Rodrigues, W. N. Mussel, “Physics, chemistry, and Hirshfeld surface analyses of gamma-irradiated thalidomide to evaluate behavior under sterilization doses” Journal of Pharmaceutical Analysis, 8(3), 194-201, 2018.
[22] B. Saikia, M. T. Mulvee, I. Torres-Moya, B. Sarma, J. W. Steed, “Drug Mimetic Organogelators for the Control of Concomitant Crystallization of Barbital and Thalidomide” Cryst. Growth Des. 20, 7989–7996, 2020.
[23] F. Kavousi, M. Goodarzi, D. Ghanbari, K. Hedayati, “Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin” Journal of Molecular Structure. 1183, 324-330, 2019.
[24] C. Goosen, T. J. Laing, J. du Plessis, T. C. Goosen, G. L. Flynn, “Physicochemical Characterization and Solubility Analysis of Thalidomide and Its N-Alkyl Analogs” Pharmaceutical Research. 19, 13–19, 2002.
[25] W. Grzesiak and B. Brycki, “Synthesis, FTIR, C-NMR and Temperature-Dependent H-NMR Characteristics of Bis-naphthalimide Derivatives” Molecules.  17, 12427-124482112.
[26] A. Suksuwan, L. Lomlim, F. L. Dickert, R. Suedee, “Tracking the chemical surface properties of racemic thalidomide and its enantiomers using a biomimetic functional surface on a quartz crystal microbalance” J. APPL. POLYM. SCI. 42309,  1-14, 2015.
[27] S. C. Mei1, R. T. Wu, “The G-rich promoter and G-rich coding sequence of basic fibroblast growth factor are the targets of thalidomide in glioma” Mol Cancer Ther. 7(8), 2405-2414, 2008.
[28] I. Ali, W. A. Wani, K. Saleem, M. F. Hseih, “Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III)”  Polyhedron. 56, 12, 134-143, 2013.