ارائه یک نانوساختار پلاسمونیک مبتنی بر نانوآنتن‌های تنگستن هشت پره برای بهبود طیف جذب در سیستمهای حرارتی خورشیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی گروه برق مرکز آموزش عالی شهرضا، دانشگاه اصفهان

2 گروه مهندسی برق، مرکز آموزش عالی شهرضا، دانشگاه اصفهان، اصفهان

چکیده

بکارگیری نانوآنتن‌های پلاسمونیک، بستری انعطاف‌پذیر برای دستکاری برهم‌کنش‌های ماده-نور در مقیاس زیرطول‌موج فراهم می‌سازد و دریچه‌ای جدید برای طراحی انواع ادوات نوری با کارایی بالا باز می‌کند. در این تحقیق، یک جاذب انرژی خورشیدی پهن باند و مستقل از قطبش نور تابشی بر اساس فلز تنگستن (W) پیشنهاد کرده ایم. این نانوساختار سه لایه، متشکل از یک لایه ضخیم از تنگستن و یک لایه نازک از عایق SiO2 با ضریب شکست بالا است که آرایه‌ای از نانوآنتن‌های به شکل ستاره هشت پر از جنس تنگستن بر روی آن لایه نشانی شده است. وجود چندین مد پلاسمونیک با سرعت واپاشی کوچک در ساختار پیشنهادی، باعث شده است که جذب بالاتر از 90 درصد در محدوده طول موج وسیعی از 250 تا 1940 نانومتر فراهم شود. این پهنای باند را می‌توان با تنظیم ضخامت لایه عایق و ابعاد هندسی نانوآنتن تنظیم کرد. ساختار پیشنهادی مسطح و کم حجم بوده و مشخصه نوری آن در یک محدوده زاویه‌ای وسیع بدون توجه به قطبش نور تابشی پایدار است. این ویژگی‌ها باعث می‌شود که فراسطح پیشنهادی، گزینه‌ای مناسب برای تبدیل انرژی خورشیدی در سیستم‌های فوتوولتائیک حرارتی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Plasmonic Nanostructure Based on Tungsten Octagram Nanoantennas to Enhance Absorption Spectrum in Solar Thermophotovoltaic Systems

نویسندگان [English]

  • Mohammad Reza Eskandari 1
  • Sayed Ayoub Mirtavousi 2
1 Department of Electrical Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran
2 Department of Electrical Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran
چکیده [English]

Plasmonic nanoantennas provides a flexible platform for manipulating the interactions of matter and light at the subwavelength scale, and opens up new avenues for the design of high-performance optical devices. In this paper, we propose a broadband and polarization-independent absorber based on tungsten (W) as a refractory plasmonic metal. This three-layer nanostructure comprises of a thick tungsten film, a thin spacer of SiO2 with high-k dielectric on which a periodic array of tungsten octagram nanoparticles is deposited. The presence of several plasmonic polaritons with low decay rates in the proposed nanostructure provides a wide bandwidth from 250 to 1940 nm with more than 90% absorptivity. The bandwidth can be tailored by altering the thickness of the insulation layer and geometric dimensions of the nanoantennas. The proposed structure benefits from a planar, low profile and small footprint, and its optical characteristic is stable in a wide range of incident angle regardless of the polarization of the incident light. These features make the proposed metasurface a suitable candidate for high-efficiency conversion of solar energy in solar thermophotovoltaic systems.

کلیدواژه‌ها [English]

  • Plasmonic metasurfaces
  • Energy harvesting
  • Absorber
  • Solar thermophotovoltaic systems
  • Optical properties
[1] A. Ghasemi, H. Shayeghi, M. Moradzadeh, M. Nooshyar. “A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management,” Applied energy, 177, 40-59, 2016.
[2] Y. Li, D. Li, D. Zhou, C. Chi, S. Yang, B. Huang. “Efficient, Scalable, and High‐Temperature Selective Solar Absorbers Based on Hybrid‐Strategy Plasmonic Metamaterials,” Solar RRL, 2, 8, 1800057, 2018.
[3] A. Nagarajan, K. Vivek, M. Shah, V.G. Achanta, G. Gerini. “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Advanced Optical Materials, 6, 16, 1800253, 2018.
[4] A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanović, M. Soljačić, E.N. Wang. “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnologyn, 9, 2, 126-130, 2014.
[5] A. Patra, A.P. Ravishankar, A. Nagarajan, S. Maurya, V.G. Achanta. “Quasiperiodic air hole arrays for broadband and omnidirectional suppression of reflection,” Journal of Applied Physics, 119, 11, 113107, 2016.
[6] H. Luo, Q. Li, K. Du, Z. Xu, H. Zhu, D. Liu, L. Cai, P. Ghosh, M. Qiu. “An ultra-thin colored textile with simultaneous solar and passive heating abilities,” Nano Energy, 65, 103998, 2019.
[7] M. Pan, Z. Su, Z. Yu, P. Wu, H. Jile, Z. Yi, Z. Chen. “A narrowband perfect absorber with high Q-factor and its application in sensing in the visible region,” Results in Physics, 19, 103415, 2020.
[8] c. Liang, Z. Yi, X. Chen, Y. Tang, Y. Yi, Z. Zhou, X. Wu, Z. Huang, Y. Yi, G. Zhang. “Dual-band infrared perfect absorber based on a Ag- dielectric -Ag multilayer films with nanoring grooves arrays,” Plasmonics, 15, 1, 93-100, 2020.
[9] A.A. Shah, M.C. Gupta. “Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles,” Solar energy materials and solar cells, 117, 489-493, 2013.
[10] C.E. Kennedy. “Review of mid-to high-temperature solar selective absorber materials,” National Renewable Energy Lab., Golden, CO.(US),NREL/TP-520-31267, 2002.
[11] S. Esposito, A. Antonaia, M.L. Addonizio, S. Aprea. “Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature,” Thin Solid Films, 517, 21, 6000-6006, 2009.
[12] N. Engheta, R.W. Ziolkowski. “Metamaterials: physics and engineering explorations,” John Wiley & Sons, 2006.
[13] M.M. Hasan, M.R.I. Faruque, M.T. Islam. “Dual band metamaterial antenna for LTE/bluetooth/WiMAX system,” Scientific reports, 8, 1, 1-17, 2018.
[14] F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, S. Chang. “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Optics express, 23, 21, 27204-27212, 2015.
[15] S.S. Islam, M.R.I. Faruque, M.T. Islam. “A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation,” Materials, 8, 8, 4790-4804, 2015.
[16] S. Shi, K. Qian, W. Gao, J. Dai, M. Li, J.Dong. “Dual-band reflection polarization converter for circularly polarized waves based on a zigzag asymmetric split ring resonator,” Journal of Applied Physics, 129, 1, 014901, 2021.
[17] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. “Perfect metamaterial absorber,” Physical review letters, 100, 20, 207402, 2008.
[18] T.T.Nguyen, S.Lim. “Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Applied Physics Letters, 112, 2, 021605, 2018.
[19] H.Tao, N.I.Landy, C.M.Bingham, X.Zhang, R.D.Averitt, W.J.Padilla. “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics express, 16, 10, 7181-7188, 2008.
[20] Y.Zhang, Z.Yi, X.Wang, P.Chu, W.Yao, Z.Zhou, S.Cheng, Z.Liu, P.Wu, M.Pan, Y.Yi. “Dual band visible metamaterial absorbers based on four identical ring patches,” Physica E: Low-dimensional Systems and Nanostructures, 127, 114526, 2021.
[21] S.Zouhdi, A.Sihvola, A.P.Vinogradov. “Metamaterials and plasmonics: fundamentals, modelling, applications,” Springer Science & Business Media, 2008.
[22] M.A. Shameli, S.R. Mirnaziry, L. Yousefi. “Distributed silicon nanoparticles: an efficient light
trapping platform toward ultrathin-film photovoltaics,” Optics Express, 29, 18, 28037-28053, 2021.
[23] Z.Li, B.Li, Q.Zhao, J.Zhou. “A metasurface absorber based on the slow-wave effect,” AIP Advances, 10, 4, 045311, 2020.
[24] M.K.Hedayati, M.Elbahri. “Perfect plasmonic absorber for visible frequency,” In 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE), 259-261, 2013.
[25] U.Guler, A.Boltasseva, V.M.Shalaev. “Refractory plasmonics,” Science, 344, 6181, 263-264, 2014.
[26] M.K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula. “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Advanced Materials, 23, 45, 5410-5414, 2011.
[27] M.K. Hedayati, F. Faupel, M. Elbahri. “Tunable broadband plasmonic perfect absorber at visible frequency,” Applied Physics A, 109(4), 769-773, 2012.
[28] M.Chen, Y.He. “Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals,” Solar Energy Materials and Solar Cells, 188, 156-163, 2018.
[29] H.Kwon, H.Chalabi, A.Alu. “Refractory Brewster metasurfaces control the frequency and angular spectrum of light absorption,” Nanomaterials and Nanotechnology, 9, 1847980418824813, 2019.
[30] E.Rephaeli, S.Fan. “Tungsten black absorber for solar light with wide angular operation range,” applied physics letters,92,21, 211107, 2008.
[31] C.H.Lin, R.L.Chern, H.Y. Lin. “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Optics express 19, 2, 415-424, 2011.
[32] L.P.Wang, Z.M. Zhang. “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Applied Physics Letters, 100, 6, 063902, 2012.
[33] Z.Yi, J.Li, J.Lin, F.Qin, X.Chen, W.Yao, Z.Liu, S.Cheng, P.Wu, H.Li. “Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array,” Nanoscale, 12, 45, 23077-23083, 202.
[34] A.S.Rana, M.Q.Mehmood, H.Jeong, I.Kim, J.Rho. “Tungsten-based ultrathin absorber for visible regime,” Scientific reports, 8, 1, 1-8, 2018.
[35] Y.Lin, Y.Cui, F.Ding, K.H.Fung, T.Ji, D.Li, Y.Hao. “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Optical Materials Express, 7, 2, 606-617, 2017.
[36] G.Hou, Z.Wang, Z.Lu, H.Song, J.Xu, K.Chen. “Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface,” ACS Applied Materials & Interfaces, 12, 50, 56178-56185, 2020.
[37] A.D.Rakić, A.B.Djurišić, J.M.Elazar, M.L.Majewski. “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, 37, 22, 5271-5283, 1998.