تهیه نانوکامپوزیت WO3/g-C3N4/Cu2O و بررسی کاربرد آن به عنوان نانوکاتالیست در واکنش تکامل هیدروژن به روش شکافت فوتوکاتالیستی آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانوفناوری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان

2 گروه نانوفناوری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

3 گروه محیط زیست، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

4 گروه نیمه‌هادی‌ها، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در پژوهش حاضر، نانوچندسازه­های WO3/g-C3N4 و WO3/g-C3N4/Cu2O حاوی نانوذرات تنگستن تری اکسید و مس (I) اکسید بر روی بستر کربن نیترید گرافیتی سنتز شدند. ویژگی‌های ساختاری و مورفولوژی نانوساختارهای سنتز شده توسط روش های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) و طیف­سنجی بازتاب نشری (DRS) بررسی شد. عملکرد نانوچندسازه ­ها به عنوان کاتالیست کاتد در فرایند شکافت فوتوکاتالیستی آب مورد بررسی و مقایسه قرار گرفت. نتایج به دست آمده نشان داد که نانوچندسازه WO3/g-C3N4/Cu2O بالاترین چگالی جریان و کمترین اضافه ولتاژ را در واکنش تکامل هیدروژن ایجاد می کند. این بهبود در عملکرد فوتوالکتروشیمیایی را می توان به افزایش مساحت سطح و افزایش انتقال الکترون ناشی از کوپل بستر کربنی با نانوذرات اکسیدی نسبت داد. افزون­بر بررسی‌های عملی، نانوکاتالیست‌ WO3/g-C3N4/Cu2O با نرم افزار متریال استودیو شبیه سازی شد و الگوی XRD و ساختار الکترونی آن با نتایج عملی مقایسه شد. الگوی XRD  نظری تطابق خوبی با الگوی XRD تجربی نشان داد. براین اساس، نانوچندسازه پیشنهادی می­تواند به خوبی به عنوان کاتالیست کاتدی در تولید سوخت پاک هیدروژن مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of WO3/g-C3N4/Cu2O nanocomposite and study its application as catalyst in hydrogen evolution reaction by photocatalytic water splitting

نویسندگان [English]

  • Ladan Nakhei 1
  • Fariba Fathirad 2
  • Maryam Fayazi 3
  • Azita Zandi 4
1 Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
2 Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
3 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
4 Semiconductors Group, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In the present work, WO3/g-C3N4 and WO3/ g-C3N4/Cu2O nanocomposites containing tungsten trioxide and copper (I) oxide nanoparticles were synthesized on a graphitic carbon nitride substrate. The structural and morphological characteristics of the synthesized nanostructures were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and diffuse reflection spectroscopy (DRS). The performance of nanocomposites as cathodic catalysts was investigated and compared in the photocatalytic water splitting process. The results showed that the WO3/g-C3N4/Cu2O nanocomposite produces the highest current density and the lowest overvoltage in the hydrogen evolution reaction. This improvement in photoelectrochemical performance can be attributed to the increase in surface area and electron transfer due to the synergetic effect between carbon substrate and oxide nanoparticles. In addition to practical studies, the WO3/g-C3N4/Cu2O nanocatalyst was simulated with Materials Studio software and the XRD pattern and its electronic structure were compared with the practical results. The theoretical XRD pattern showed good agreement with the experimental XRD pattern. Accordingly, the proposed nanocomposite can be well used as a cathodic catalyst in the production of pure hydrogen fuel.

کلیدواژه‌ها [English]

  • Semiconductor
  • Photocatalyst
  • Hydrogen evolution
  • Water splitting
[1] A.M.M.I. Qureshy, E. Dincer, "A new integrated renewable energy system for clean electricity and hydrogen fuel production", International Journal of Hydrogen Energy, 45, 1, 20944-55, 2021.
[2] M. Ahmed, I. Dincer, “A review on photoelectrochemical hydrogen production systems: challenges and future directions”, International Journal of Hydrogen Energy, 44, 5, 2474-2507, 2019.
[3] D. Afzali, F. Fathirad, "Performance Investigation of Bimetallic Nanocatalysts for Improvement of Ethylene Glycol and Glycerol Oxidation Process in Fuel Cell", In Persian, Nashrieh Shimi va Mohandesi Shimi Iran, 39, 3, 93-100, 2020.
[4]        A.R. Madram, M. Mohebbi, M. Nasiri, M.R. Sovizi, " Preparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction", 5, 1-11, 2018.
[5]        J. Safaei, et al., “Graphitic carbon nitride (gC3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors,” J. Material Chemistry A, 6, 45, 22346–22380, 2018.
[6]        J. Wang, “Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation.” KTH Royal Institute of Technology, 2015.
[7] C. Acar, “Experimental investigation and analyses of continuous type hybrid photoelectrochemical hydrogen production systems.” PhD Thesis, University of Ontario, Canada, 2016.
[8] A. Shokri, “Using Mn based on lightweight expanded clay aggregate (LECA) as an original catalyst for the removal of NO2 pollutant in aqueous environment” Surfaces and Interfaces 21, 100705, 2020.
[9] A. Shokri, K. Mahanpoor, “Removal of Ortho-Toluidine from Industrial Wastewater by UV/TiO2 Process” Journal of Chemical Health Risks, 6(3), 213-223, 2016.
[10] M. Saghi, A. Shokri, A. Arastehnodeh, M. Khazaeinejad, A. Nozari, “The photo degradation of methyl red in aqueous solutions by α-Fe2O3/SiO2 nano photocatalyst”, Journal of Nanoanalysis, 5(3), 163-170, 2018.
[11] A. Shokri, A. Bayat, K. Mahanpoor, “Employing Fenton-like process for the remediation of petrochemical wastewater through Box–Behnken design method”, Desalination and Water Treatment, 166, 135–143, 2019.
[12] A. Shokri, “Employing Sono-Fenton Process for Degradation of 2-Nitrophenol in Aqueous Environment Using Box–Behnken Design Method and Kinetic Study”, Russian Journal of Physical Chemistry A, 93, 243–249, 2019.
[13]      H. Over, “Nanophysics and Nanotechnology. An Introduction to Modern Concepts in Nanoscience. By Edward L. Wolf.,” ChemPhysChem, 6, 8, 1661, 2005.
[14] W.J. Jo, “Solar energy conversion via photovoltaics and photocatalysis.” PhD Thesis, Massachusetts Institute of Technology, 2017.
[15] R. Wang, J. Yan, M. Zu, S. Yang, X. Cai, Q. Gao, Y. Fang, S. Zhang, S. Zhang, “Facile synthesis of interlocking g-C3N4/CdS photoanode for stable photoelectrochemical hydrogen production,” Electrochimica Acta, Vol. 279, 74–83, 2018.
[16] S. Yao, F. Qu, G. Wang, and X. Wu, “Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors,” J. Alloys Compd., 724, 695–702, 2017.
[17] H. Azadi, H. D. Aghdam, R. Malekfar, and S. M. Bellah, “Effects of energy and hydrogen peroxide concentration on structural and optical properties of CuO nanosheets prepared by pulsed laser ablation,” Results Phys., 15, 102610, 2019.
[18] J. Singh, A. Arora, S. Basu, “Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light,” Journal of Alloys and Compound., 808, 151734, 2019.
[19] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, “Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review,” Carbon, 149, 693, 2019.