سنتز و بررسی عملکرد فوتوکاتالیستی نانوکامپوزیت سه‌تایی گرافن‌اکسید-سیلیکا/مگنتیت در حذف رنگ از پساب‌های صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه ولی عصر رفسنجان

چکیده

با توسعه فناوری و گسترش استفاده از رنگ­های صنعتی، امروزه آلودگی زیست محیطی به یک بحران عمومی تبدیل شده است. از میان روش­های متفاوت روش فوتوکاتالیستی به­ دلیل اینکه روشی ساده، کم هزینه و مؤثر برای حذف آلاینده­ها است، توجه زیادی را به خود جلب کرده است. فوتوکاتالیستی بر پایه نانوچندسازه­ ها عامل مؤثری برای از بین بردن آلودگی­های صنعتی است. در پژوهش حاضر ابتدا گرافن­ اکسید و سپس، نانوکامپوزیت گرافن­ اکسید-سیلیکا/مگنتیت در سه نسبت مختلف از درصد وزنی مگنتیت سنتز و پس از مشخصه‌یابی­ های ساختاری XRD, UV-vis, VSM, FTIR, FESEM, EDS, TEM))، عملکرد آن­ها به عنوان جاذبی مؤثر برای حذف رنگ متیلن آبی از محلول­های آبی استفاده شد. نتایج نشان داد که چندسازه (1:3) گرافن­اکسید-سیلیکا/مگنتیت بیشترین درصد تخریب برابر با 95/94 %، را در مقایسه با دو نانوکامپوزیت دیگر یعنی گرافن­ اکسید-سیلیکا/مگنتیت با نسبت­های (1:2) و (1:1) به ترتیب با درصد تخریب­های 52/92 % و 46/88 % از خود نشان داد. بنابراین، با افزایش سهم مگنتیت درصد تخریب رنگ متیلن آبی و در نتیجه کارایی فوتوکاتالیست افزایش می ­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and evaluation of the photocatalytic performance of graphene oxide-silica/magnetite ternary nanocomposites for industrial wastewater treatment

نویسندگان [English]

  • Jamileh Seyed-Yazdi
  • Fatemeh Ebrahimi-Tazangi
  • Seyedeh Hoda Hekmatara
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan
چکیده [English]

With the development of technology, and the expansion of using industrial paints, environmental pollution has become a general crisis today. Among the various methods, photocatalysis has attracted attention, because it is a simple, low-cost, and effective method for removing organic contaminants. Photocatalysis based on nanocomposites is an effective way of removal of industrial contamination. In this study, graphene oxide, and graphene oxide-silica/magnetite nanocomposites, were synthesized with three different weight ratios of magnetite. After structural characterization (XRD, UV-vis, VSM, FTIR, FESEM, EDS, TEM), their performance as an effective adsorbent, evaluated for removing methylene blue dye from aqueous solutions. The results indicate that graphene oxide-silica/magnetite (1:3) shows the highest degradation rate, about 94.95% compared to (1:2) and (1:1) samples with 92.52% and 88.46%, respectively. Therefore, by increasing the amount of magnetite, degradation percentage and photocatalysis efficiency increase.

کلیدواژه‌ها [English]

  • Graphene oxide
  • Magnetite
  • Silica
  • Methylene Blue
  • Photocatalytic performance
[1] P. Muthukumar, V. Alex, M. Pannipara, A. G. Al-Sehemi, S. P. Anthony, “Fabricating highly efficient Ag3PO4-Fe3O4-GO ternary nanocomposite photocatalyst: Effect of Fe3O4-GO preparation methods on photocatalytic activity,” Materials research bulletin, 141, 111337, 2021.
[2] S. Khan, A. Malik, “Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye,” Environmental science and pollution research international, 25, 4446-4458, 2018.
[3] X. Liu, J. C. Steele, X. Z. Meng, “Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review,” Environmental pollution, 223, 161-169, 2017.
[4] L. Tang, J. J. Wang, C. T. Jia, G. X. Lv, G. Xu, W. T. Li, L. Wang, J. Y. Zhang, M. H. Wu, “Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots,” Applied catalysis B: environmental, 205, 587-596, 2017.
[5] T. A. Kurniawan, Z. Mengting, D. Fu, S. K. Yeap, M. H. D. Othman, R. Avtar, T. Ouyang, “Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater,” Journal of environmental management, 270, 110871, 2020.
[6] J. Nie, C. Y. Li, Z. Y. Jin, W. T. Hu, J. H. Wang, T. Huang, Y. Wang, “Fabrication of MCC/Cu2O/GO composite foam with high photocatalytic degradation ability toward methylene blue,” Carbohydrate polymers, 223, 115101, 2019.
[7] Y. Lin, R. Hong, H. Chen, D. Zhang, J. Xu, “Green synthesis of ZnO-GO composites for the photocatalytic degradation of methylene blue, Journal of nanomaterials,” 2020, 4147357, 2020.
[8] W. Zhang, Y. Zhang, K. Yang, Y. Yang, J. Jia, L. Guo, “Photocatalytic performance of SiO2/CNOs/TiO2 to accelerate the degradation of Rhodamine B under visible light,” Nanomaterials, 9(12), 1671, 2019.
[9] S. Balu, K. Uma, G. T. Pan, T. C. K. Yang, S. K. Ramaraj, “Degradation of methylene blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers,” Materials, 11(6), 1030, 2018.
[10] X. Zhao, W. Ju, J. Zhang, B. Liu, J. Zhang, X. Yi, “Mesoporous TiO2/SiO2/Ag ternary composite aerogels for high photocatalysis,” New journal of chemistry, 43, 6234-6241, 2019.
[11] A. Rehman, A. Daud, M. F. Warsi, I. Shakir, P. O. Agboola, M. I. Sarwar, S. Zulfiqar, “Nanostructured maghemite and magnetite and their nanocomposites with graphene oxide for photocatalytic degradation of methylene blue,” Materials chemistry and physics, 256, 123752, 2020.
[12] A. Arshad, J. Iqbal, I. Ahmad, M. Israr, “Graphene/Fe3O4 nanocomposite: Interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange,” Ceramics international, 44(3), 2643-2648, 2018.
[13] J. You, Y. Xiang, Y. Ge, Y. He, G. Song, “Synthesis of ternary rGO-ZnO-Fe3O4 nanocomposites and their application for visible light photocatalytic degradation of dyes,” Clean technologies and environmental policy, 19(8), 2161-2169, 2017.
[14] E. Alzahrani, “Photodegradation of binary azo dyes using core-shell Fe3O4/SiO2/TiO2 nanospheres,” American journal of analytical chemistry, 8, 95-115, 2017.
[15] M. Dehghani-Dashtabi, H. Hekmatara, J. Seyed-Yazdi, “Synthesis and improved photoactivity of magnetic quaternary nanocomposites consisting of Fe3O4@ZnO core@shell nanoparticles decorated on graphene-oxide grafted poly-citric acid,” Physica B: condensed matter, 553, 11-17, 2019.
[16] C. Fu, X. Liu, Y. Wang, L. Li, Z. Zhang, “Preparation and characterization of Fe3O4@SiO2@TiO2-Co/rGO magnetic visible light photocatalyst for water treatment,” RSC advances, 9(35), 20256-65, 2019.
[17] Y. Kuang, X. Zhang and S. Zhou, “Adsorption of methylene blue in water onto activated carbon by surfactant modification,” Water, 12(2), 587, 2020.
[18] M. Darvishi, J. Seyed-Yazdi, “Characterization and comparison of photocatalytic activities of prepared TiO2/graphene nanocomposites using titanium butoxide and TiO2 via microwave irradiation method,” Materials research express, 3 (8), 085601, 2016.
[19] F. Ebrahimi-Tazangi, S. H. Hekmatara, J. Seyed-Yazdi, “Remarkable microwave absorption of GO-SiO2/Fe3O4 via an effective design and optimized composition,” Journal of alloys and compounds, 854, 157213, 2021.
[20] F. Ebrahimi-Tazangi, S. H. Hekmatara, J. Seyed-Yazdi, “Synthesis and remarkable microwave absorption properties of amine-functionalized magnetite/graphene oxide nanocomposites,” Journal of alloys and compounds, 809, 151779, 2019.
[21] A. J. Bard, L. R. Faulkner, “Electrochemical methods: Fundamentals and applications,” ISBN: 978-0-471-04372-0, 580-632, 2000.
[22] Ӧ. Metin, Ș Aydoǧan, K. Meral, “A new route for the synthesis of graphene oxide Fe3O4 (GO-Fe3O4) nanocomposites and their Schottky diode applications,” Journal of alloys and compounds, 585, 681-688, 2014.
[23] Y. Qin, R. Che, C. Liang, J. Zhang, Z. Wen, “Synthesis of Au and Au–CuO cubic microcages via an in situ sacrificial template approach,” Journal of materials chemistry, 21, 3960-3965, 2011.
[24] W. Wang, K. Xiao, L. Zhu, Y. Yin, Z. Wang, “Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation,” RSC advances, 7, 21287-21297, 2017.
[25] K. Tedsree, N. Temnuch, N. Sriplai, S. Pinitsoontorn, “Ag modified Fe3O4@TiO2 magnetic core-shell nanocomposites for photocatalytic degradation of methylene blue,” Materials today: proceedings, 4(5), 6576-6584, 2017.
[26] J. Chang, Q. Zhang, Y. Liu, Y. Shi, Z. Qin, “Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol,” Journal of materials science: materials in electronics, 29(10), 8258-8266, 2018.
[27] F. Farahbakhsh, M. Ahmadi, S. H. Hekmatara, M. Sabet, E. Heydari-Bafrooei, “Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant,” Materials chemistry and physics, 224, 279-285, 2019.
[28] S. Yang, T. Zeng, Y. Li, J. Liu, Q. Chen, J. Zhou, B. Tang, “Preparation of graphene oxide decorated Fe3O4@SiO2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes,” Journal of nanomaterials, 2015, 817924, 2015.