تخریب فوتوکاتالیستی داروی بیزاکودیل با استفاده از نانوچندسازه هسته-پوسته مگنتیت- مس(II) اکسید در محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، واحد مشهد،دانشگاه آزاد اسلامی،مشهد، اﯾﺮان

2 دانشگاه سمنان، دانشکده فیزیک، سمنان، ایران

چکیده

این پژوهش، با هدف بررسی اثر فوتوکاتالیست نانوچندسازه هسته-پوسته مگنتیت- مس (II) اکسید بر میزان تخریب داروی بیزاکودیل با استفاده از نور لامپ دیود نورگسیل با طول موج 200 تا 500 نانومتر با توان 20 وات انجام شده است. برای این منظور، خصوصیات مربوط به نانوچندسازه بوسیله تصویر میکروسکوپ الکترونی (SEM)، میکروسکوپ الکترونی عبوری (TEM)، طیف تبدیل فوریه فروسرخ و آنالیز (XRD) مشخص شد. تأثیر پارامترهای غلظت دارو، مقدار نانوچندسازه، pH محلول، اثر هم­زدن محلول و اثر اکسیژن محلول تحت فرایند فوتوکاتالیستی بررسی شده است. یافته­ های پژوهش، کارایی مؤثر نانوچندسازه هسته-پوسته مگنتیت- مس (II) اکسید را در تخریب فوتوکاتالیستی داروی بیزاکودیل در شرایط بهینه غلظت بیزاکودیل20 میلی گرم بر لیتر، مقدار نانوچندسازه­های هسته-پوسته مگنتیت- مس(II) اکسید 0/1 گرم، pH محلول 7 و سرعت هم زدن rpm 750  در اتمسفر هوا نشان می­دهد. به طوری که حذف کامل دارو در شرایط بهینه پس از90 دقیقه به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Photocatalytic degradation of bisacodyl using Fe3O4@CuO core-shell nanocomposite in aqueous solutions

نویسندگان [English]

  • Amin Dadras Mahboob 1
  • Razieh Sanavi Khoshnood 1
  • Davoud Sanavi Khoshnoud 2
1 Department of Chemistry, Faculty of Sciences, , Islamic Azad University
2 Faculty of Physics, Semnan University, P. O. Box 35195‑363, Semnan, Iran
چکیده [English]

The aim of this study was to investigate the photocatalytic effect of magnetocite-copper(II) oxide core-shell nanocomposites on the rate of degradation of bisacodyl using 20 W light emitting diode lamp. For this purpose, the effect of parameters such as drug concentration, nanocomposite content, pH of the solution, the effect of stirring the solution and the effect of dissolved oxygen under photocatalytic process has been investigated. research findings showed the effective efficiency of core-shell magnetite-copper(II) oxide nanocomposite and 20 W light emitting diode lamp in photocatalytic degradation of bisacodyl drug in optimal parameters, ie bisacodyl concentration of 20 mg / L, amount of core-shell magnetite-copper(II) oxide nanocomposite 0/1 g and the pH of solution 7 and stirring speed 750 rpm in air atmosphere. In this study, the results obtained in the process of photocatalytic degradation of bisacodyl using nanocomposites of core-shell magnetite-copper oxide in the presence of 20 watt light emitting diode lamp, shows the effective efficiency of this analytical method.

کلیدواژه‌ها [English]

  • Photocatalyst
  • core-shell nanocomposite-magnetite-copper (II) oxide
  • bisacody
[1]. O.A. Alsager, M.N. Alnajrani, H.A. Abuelizz, I.A.  Aldaghmani, “Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity,” Ecotoxicology and environmental safety, 158, 114-122, 2018.
[2]. A. Elvis, M. Deepali, “Development and validation of UV spectrophotometric method for determination of bisacodyl in suppositories,” Development, 3, 193–196, 2011.
[3]. S.L. Ali, “Determination of bisacodyl and its hydrolysis products in bisacodyl formulations by high-performance liquid chromatography,” Fresenius’ Zeitschrift für analytische Chemie, 299, 124–126, 1979.
[4]. D. Kanakaraju, B.D. Glass, M. Oelgemöller, “Advanced oxidation process-mediated removal of
pharmaceuticals from water: A review,” Journal of environmental management, 219, 189-207, 2018. 
[5]. R. Kıdak, Ş. Doğan, “Medium-high frequency ultrasound and ozone based advanced oxidation
for amoxicillin removal in water,” Ultrasonics sonochemistry, 40, 131-139, 2018.
[6]. Y. He, X. Wang, W. Huang, R. Chen, W. Zhang, H. Li, H. Lin, “Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics,” Chemosphere, 193, 89-99, 2018.
[7]. T. Guo, X. Bian, Ch. Yang, “A new method to prepare water based Fe3O4 ferrofluid with high stabilization,” Physica A: Statistical Mechanics and its Applications, 438, 560-567, 2015.
[8]. E. Ghasemi, A. Mirhabibi, M. Edrissi, “Synthesis and rheological properties of an iron oxide ferrofluid,” Journal of magnetism and
magnetic materials, 320, 2635– 2639, 2008.
[9]. J.B. Mamania, A.J. Costa-Filhob, D.R. Cornejoc, E.D. Vieirad, L.F. Gamarra, “Synthesis and characterization of magnetite nanoparticles coated with lauric acid,” Materials characterization, 81, 28–36, 2013.
[10]. H.E. Ghandoor, H.M. Zidan, M.H. Khalil-Mostafa, M.I.M. Ismail, “Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles,” International journal of electrochemical science, 7, 5734-5745, 2012.
[11]. L. Zhou, J. Yuan, Y. Wei, “Core–shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications,” Journal of materials chemistry, 21, 2823-2840, 2011.
[12]. I.A. Martinez, M.A.G. Lobato, D.L. Perry, “Study of the properties of iron oxide nanostructures,” Research in nanotechnology developments, 183-194, 2009.
[13]. J.A. Lopez, F. González, F.A. Bonilla, G.M. Zambrano, E. Gómez, “Synthesis and characterization of Fe3O4 magnetic
nanofluid,” Revista latinoamericana de metalurgia y materiales, 30, 60-66, 2010.
[14]. M. Bahiraei, M. Hangi, “Flow and heattransfer characteristics of
Magneticnanofluids,” Journal of magnetism and magnetic materials. 374, 125-138, 2015.
[15].  N.A. Dhas, C.P. Raj, A. Gedanken, “Synthesis characterization and properties of metallic copper nanoparticles,” Chemistry of materials. 10, 1446-1452, 1998. 
[16]. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, “Synthesis and antimicrobial activity of copper nanoparticles,” Materials letters, 71, 114-116, 2012.
[17]. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, “Application of nanoparticles in electrochemical sensors and biosensors,” Electroanalysis, 18, 319–326, 2006.
[18].  Z. Ibupoto, K. Khun, V. Beni, X. Liu, M. Willander, “Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications,” Sensors, 13, 7926-7938, 2013.
[19]. Z. Dastjerdi, A.M. Aarabi, M. Shafiee-Afarani, E. Ghasemi, “Synthesis of Fe3O4 and Fe3O4-CuO magnetic nanopigments by precipitation method,” Journal of color science and technology, 11, 287-295, 2018.
[20]. F. Deng, L. Zhao, X. Luo, S. Luo, D.D. Dionysiou, “Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater,” Chemical engineering journal, 333, 423-433, 2018.
[21]. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, M. Sadiq, F. Mahjoubi, S. Qourzal, N. Barka, “Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnOAl2O3 heterostructure,” Environmental nanotechnology, monitoring & management, 10, 63-72, 2018.
[22]. H. Lin, H. Li, L. Chen, L. Li, L. Yin, H. Lee, Z. Yang, “Mass loading and emission of thirtyseven pharmaceuticals in a typical municipal wastewater treatment plant in Hunan Province, Southern China,” Ecotoxicology and environmental safety, 147, 530-536, 2018.
[23]. R. Mirzaei, M. Yunesian, S. Nasseri, M. Gholami, E. Jalilzadeh, S. Shoeibi, A. Mesdaghinia, “Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran,” Science of the total environment, 619, 446-459, 2018.
[24]. R. Pulicharla, R. Drouinaud, S.K. Brar, P. Drogui, F. Proulx, M. Verma, R.Y. Surampalli,  “Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution,” Chemosphere, 207, 543-551, 2018.
[25]. Y. Wang, H. Huang, X. Wei, “Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes,” Chemical engineering journal, 333, 66-75, 2018.
[26]. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, “Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment,” Chemical engineering journal, 334, 462–478, 2018.
[27]. M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, “Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow
nanospheres,” Journal of hazardous materials, 181, 1039–1050, 2010.
[28]. S. Shen, J. Ren, J. Chen, X. Lu, C. Deng, X. Jiang, “Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiationassisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats,” Journal of chromatography A, 1218, 4619–4626, 2011.
[29]. B. Kakavandi, R. Rezaei Kalantary, A. Jonidi Jafari, A. Esrafily, A. Gholizadeh, A. Azari, “Efficiency of powder activated carbon magnetized by Fe3O4 nanoparticles for amoxicillin removal from aqueous solutions: equilibrium and kinetic studies of adsorption process,” Iranian journal of  health and environment, 7, 21–34, 2014.
[30]. J. Ding, L. Liu, J. Xue, Z. Zhou, G. He, H. Chen, “Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light,” Journal of alloys and compounds, 688, 649-656, 2016.
[31]. Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han, X. Liu, “Sub-10 nm Fe3O4@ Cu2–xS core–shell nanoparticles for dual-modal imaging and photothermal therapy,” Journal of the american chemical society, 135, 8571-8577, 2013.
[32]. M. Martín, P. Salazar, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, “Preparation of core– shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction,” Journal of materials chemistry B. 2, 739-746, 2014.
[33]. T. Gulin-Sarfraz, J. Zhang, D. Desai, J. Teuho, J. Sarfraz, H. Jiang, C. Zhang, C. Sahlgren, M. Lindén, H. Gu, “Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres,” Biomaterials science, 2, 1750-1760, 2014.
[34]. W.E.I. Zhang, M. Saliba, S.D. Stranks, Y. Sun, X. Shi, U. Wiesner, H.J. Snaith, “Enhancement of perovskitebased solar cells employing core–shell metal nanoparticles,” Nano letters, 13, 4505-4510, 2013.
[35]. J. Croissant, D. Salles, M. Maynadier, O. Mongin, V. Hugues, M. Blanchard-Desce, X. Cattoën, M. Wong Chi Man, A. Gallud, M. Garcia, “Mixed periodic mesoporous organosilica nanoparticles and core–shell systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery,” Chemistry of materials, 26, 7214-7220, 2014.
[36]. E. Tombacz, A. Majzik, Z.S. Horvat, E. Illess, “Magnetite in aqueous medium: coating its surface and surface coated with it,” Romanian reports of physics, 58, 281-286, 2006.
[37]. R.M. Cornell, U. Schwertmann, “The iron oxides,” VCH, Weinheim, 1996.
 
[38]. M. Kosmulski, “pH-dependent surface charging and points of zero charge II. Update,” Journal of colloid and interface science, 275, 214-224, 2004.
[39]. H. Fatimah, M. Zaid, C.F. Kait, M.I. Abdul-Mutalib, “Preparation and characterization of Cu-Fe/TiO2 Photocatalyst for visible light deep desulfurization,” Malaysian journal of analytical sciences, 20, 713-725, 2016.
[40]. H. Tju, A. Taufik, R. Saleh, “Adsorption of methylene blue using Fe3O4/CuO/ZnO/ nanographene platelets (NGP) composites with various NGP concentration,” Journal of physics: conference series, 776, 012019, 2016.
[41]. T. Guo, X. Bian, Ch. Yang, “A new method to prepare water based Fe3O4 ferrofluid with high stabilization,” Physica A: statistical mechanics and its applications, 438, 560-567, 2015.
[42]. X. Zhang, G. Wang, M. Yang, Y. Luan, W. Dong, R. Dang, H. Gao, J. Yu, “Synthesis of Fe3O4-CuO@meso-SiO2 nanostructure as a magnetically recyclable and efficient catalyst for styrene epoxidation,” Catalysis science and technology, 1-7, 2014.
[43]. E. Grazenaite, J. Kiuberis, A. Beganskiene, J. Senvaitiene, A. Kareiva, “XRD and FT-IR characterisation of historical green pigments and their lead-based glazes,” Chemija, 25, 199-205, 2014.
[44]. S.K. Rajabi, Sh. Sohrabnezhad, S. Ghafourian, “Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity,” Journal of solid state chemistry, 244, 160-163, 2016.