اندازه گیری نوری کاهش تجمعات پروتئینی آمیلوئید بتا دراثر حضور نانوذرات نقره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه بیوفوتونیک، دانشکده فیزیک، دانشگاه خوارزمی، کرج، ایران

2 دانشکده علوم زیستی، دانشگاه خوارزمی، کرج، ایران

3 پژوهشکده علوم کاربردی، دانشگاه خوارزمی، کرج ، ایران

4 آزمایشگاه فوتونیک، دانشکده فیزیک، دانشگاه خوارزمی

چکیده

تجمعات آمیلوئیدبتا به عنوان شاخص وجود بیماری­های متفاوت توجه پژوهشگران است. در حال حاضر، رایج ­ترین روش بررسی مقدار  تجمعات آمیلوئیدی در حضور یک ترکیب، استفاده از تست تیوفلاوین تی است که براساس طیف نشری مولکول تیوفلاوین تی عمل می کند. بطور معمول بازشدن تجمعات پروتئین آمیلوئیدبتا باعث کاهش نشر فلوئورسانس تیوفلاوین تی می­شود. اما این روش عاری از خطا نبوده و بنابراین، وجود تست­های تکمیلی دیگر حائز اهمیت است. در این پژوهش، از روش جاروب  zبرای اندازه­گیری ضریب شکست غیرخطی پروتئین آمیلوئیدبتا در حضور نانوذرات نقره با غلظت­های متفاوت استفاده شده است. مطابق نتایج،  نانو ذرات نقره مرتبه­ی بزرگی ضریب شکست غیرخطی آمیلوئید بتا را از 10-10 به 9-10 تغییر داد و با افزایش غلظت نانوذرات نقره، اندازه­ ی ضریب شکست غیر خطی بزرگتر شد. در هر دو تست، موثرترین غلظت ، 0.24  بود که بیشترین کاهش نشر فلورسانس وبزرگترین اندازه  ضریب شکست غیرخطی را نتیجه داد. بنابراین،  نتایج هر دو تست کاملا با هم مطابقت داشتند به صورتی که هرچه اندازه ضریب شکست غیرخطی با زیاد شدن غلظت نانوذرات افزایش پیدا کند، شدت نشر فلورسانس در آن غلظت­ها کاهش می­ یابد. در نتیجه حضور نانوذرات نقره باعث کاهش تجمعات آمیلوئیدی می­ شود که بصورت کمی قابل اندازه ­گیری است.

کلیدواژه‌ها


عنوان مقاله [English]

Optical measurement of the mount of decrement in amyloid beta aggregations in the presence of silver nano particles

نویسندگان [English]

  • mohammad jamali 1
  • sara sheikhlari 2
  • salman mohajer mazandarani 3 1
  • mohamadhossein majlesara 4 1
چکیده [English]

Amyloid aggregations are the major biomarkers of various chronic diseases. Currently, one of the most common tests for in-vitro quantification of amyloid fibrillation kinetics is Thioflavin T assay, which is based on the flurescence emission of Thioflavin T. Inspite of its helpfulness, still has some drawbacks, and hence, introducing other tests to confirm its results is indispensible. Herein, we used Z-scan method to find the nonlinear refractive indices of silver nano particles at various concentrations. According to the results, silver nano particles altered the order of the aggregations from 10-10 to 10-9 such way that the magnitude of the nonlinear refractive indices and the florescence intensities increased and decreased, respectively with increment in the concentrations. Having the maximum diminution in the fluorescence intensity and the and the largest magnitude of nonlinear refractive index, 0.24 μg/ml was recorded as the optimal concentration. Therefore, the results of Thioflavin T and Z-scan, aligned perfectly with each other in a way that the more the concentrations of the silver nano particles were, the more the magnitude of the nonlinear refractive indices, and the more decrement in the fluorescence intensities, and thus, silver nano particles can wipe out the aggregations, which is quantitatively measurable.

کلیدواژه‌ها [English]

  • Silver nanoparticles
  • Amyloid beta protein
  • Fluorescence emission
  • Nonlinear refractive index
[1]      N. Cremades and C. M. Dobson, “The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases,” Neurobiol. Dis., 109, 178–190, 2018.
[2]      S. F Lichtenthaler, “Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking,” Curr. Alzheimer Res., 9, 2, 165–177, 2012.
[3]      G. Brinkmalm et al., “Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain,” Brain, 142, 1441–1457, 2019.
[4]      T. Guo, D. Zhang, Y. Zeng, T. Y. Huang, H. Xu, and Y. Zhao, “Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease,” Mol. Neurodegener., 15, 1–37, 2020.
[5]      P. H. Nguyen et al., “Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis,” Chem. Rev., 121, 2545–2647, 2021.
[6]      A. Ashok et al., “Retinal degeneration and Alzheimer’s disease: an evolving link,” Int. J. Mol. Sci., 21, 7290, 2020.
[7]      L. Deng et al., “Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells,” Front. Mol. Neurosci., 12, 24, 2019.
[8]      T. Prasad et al., “Amyloid β peptides overexpression in retinal pigment epithelial cells via AAV-mediated gene transfer mimics AMD-like pathology in mice,” Sci. Rep., 7, 1–15, 2017.
[9]      K. Araki et al., “Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein,” Proc. Natl. Acad. Sci., 116, 17963–17969, 2019.
[10]    D. Yedlapudi, L. Xu, D. Luo, G. B. Marsh, S. V Todi, and A. K. Dutta, “Targeting alpha synuclein and amyloid beta by a multifunctional, brain-penetrant dopamine D2/D3 agonist D-520: Potential therapeutic application in Parkinson’s disease with dementia,” Sci. Rep., 9, 1–12, 2019.
[11]    G. Gagno et al., “From Brain to Heart: Possible Role of Amyloid-β in Ischemic Heart Disease and Ischemia-Reperfusion Injury,” Int. J. Mol. Sci., 21, 9655, 2020.
[12]    J. Leszek et al., “The Links between Cardiovascular Diseases and Alzheimer’s Disease,” Curr. Neuropharmacol., 19, 152–169, 2021.
[13]    D. A. Stakos et al., “The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar,” J. Am. Coll. Cardiol., 75, 952–967, 2020.
[14]    P. Bharadwaj et al., “The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin, and tau proteins,” J. Alzheimer’s Dis., 59, 421–432, 2017.
[15]    M. G. Morgese, S. Schiavone, and L. Trabace, “Emerging role of amyloid beta in stress response: Implication for depression and diabetes,” Eur. J. Pharmacol., 817, 22–29, 2017.
[16]    J. B. Bryson et al., “Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis,” Hum. Mol. Genet., 21, 3871–3882, 2012.
[17]    N. Y. Calingasan, J. Chen, M. Kiaei, and M. F. Beal, “β-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients,” Neurobiol. Dis., 19, 340–347, 2005.
[18]    J. Ezpeleta et al., “Production of seedable Amyloid-β peptides in model of prion diseases upon PrP Sc-induced PDK1 overactivation,” Nat. Commun., 10, 1–13, 2019.
[19]    A. Cornejo, J. M. Jiménez, L. Caballero, F. Melo, and R. B. Maccioni, “Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease,” J. Alzheimer’s Dis., 27, 143–153, 2011.
[20]    K. Gade Malmos et al., “ThT 101: a primer on the use of thioflavin T to investigate amyloid formation,” Amyloid, 24, 1–16, 2017.
[21]    S. A. Hudson, H. Ecroyd, T. W. Kee, and J. A. Carver, “The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds,” FEBS J., 276, 5960–5972, 2009.
[22]    L. P. Jameson, N. W. Smith, and S. V Dzyuba, “Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (Aβ) self-assembly,” ACS Chem. Neurosci., 3, 807–819, 2012.
[23]    D. J. Lindberg, A. Wenger, E. Sundin, E. Wesén, F. Westerlund, and E. K. Esbjörner, “Binding of thioflavin-T to amyloid fibrils leads to fluorescence self-quenching and fibril compaction,” Biochemistry, 56, 2170–2174, 2017.
[24]    N. R. Rovnyagina et al., “Fluorescence Lifetime and Intensity of Thioflavin T as Reporters of Different Fibrillation Stages: Insights Obtained from Fluorescence Up-Conversion and Particle Size Distribution Measurements,” Int. J. Mol. Sci., 21, 6169, 2020.
[25]    M. Sebastiao, N. Quittot, and S. Bourgault, “Thioflavin T fluorescence to analyse amyloid formation kinetics: Measurement frequency as a factor explaining irreproducibility,” Anal. Biochem., 532, 83–86, 2017.
[26]    A. I. Sulatskaya, M. I. Sulatsky, I. A. Antifeeva, I. M. Kuznetsova, and K. K. Turoverov, “Structural analogue of thioflavin T, DMASEBT, as a tool for amyloid fibrils study,” Anal. Chem., 91, 3131–3140, 2019.
[27]    M. M. Wördehoff and W. Hoyer, “α-Synuclein aggregation monitored by thioflavin T fluorescence assay,” Bio-protocol, 8,12-18, 2018.
[28]    M. Yousaf, H. Huang, P. Li, C. Wang, and Y. Yang, “Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation,” ACS Chem. Neurosci., 8, 1368–1377, 2017.
[29]    E. W. Van Stryland and M. Sheik-Bahae, “Z-scan technique for nonlinear materials characterization,” in Materials Characterization and Optical Probe Techniques: A Critical Review, 10291, 102910Q, 1997.
[30]    H. M. El-Rafie and M. A.-A. Hamed, “Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species,” Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 35008, 2014.
[31]    R. Rajeswari, H. G. Prabu, and D. M. Amutha, “One Pot Hydrothermal synthesis characterizations of silver nanoparticles on reduced graphene oxide for its enhanced antibacterial and antioxidant properties,” IOSR J. Appl. Chem, 10, 64–69, 2017.
[32]    J. H. Hardesty and B. Attili, “Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry,” Collin Coll. Dep. Chem., 2010.
[33]    E. A. Mamonov et al., “Anisotropy versus circular dichroism in second harmonic generation from fourfold symmetric arrays of G-shaped nanostructures,” Phys. Rev. B, 89, 121113, 2014.
[34]    K. Itoh, W. Watanabe, and Y. Ozeki, “Nonlinear ultrafast focal-point optics for microscopic imaging, manipulation, and machining,” Proc. IEEE, 97, 1011–1030, 2009.