بررسی نظری ویژگی های ساختاری و الکترونی دودکاهدران سیلیسیمی، به عنوان حسگرنوری -شیمیایی با روش نظریه‌ی تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده‌ی علوم، دانشگاه زنجان، زنجان، ایران

چکیده

در این پژوهش، نخست ساختارهای فولرن و فولرانی برای عنصر سیلیسیم مورد بررسی قرار گرفته ­است. سپس، از نظر ویژگی­ های شیمیایی با ساختارهای متناظر کربنی مقایسه شده ­اند. یافته­های ما نشان می ­دهد که سیلیسیم فقط با کاهش تقارن در ساختار فولرنی قرار می­ گیرد و حتی در اندازه­ های اولیه­ی هندسه­ی فولرنی، نمی ­تواند ساختار پایداری تشکیل دهد. با این وجود فولران ­های سیلیسیمی، مانند فولران­های کربنی متقارن و پایدار هستند و همچنین، سختی شیمیایی و الکترون­خواهی بالایی دارند که این دو ویژگی آن­ها را برای استفاده در حسگرهای شیمیایی مناسب می­ سازد. ویژگی­های الکترونی ساختارهای مورد بررسی با نظریه­ی تابعی چگالی تحت تابعی و توابع پایه­ ی B3LYP/6-31+G(d,p) انجام گرفته­ است و برای بدست آوردن طیف مرئی-فرابنفش از محاسبات وابسته به زمان نظریه­ ی تابعی چگالی استفاده شده ­است.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical study of structural and electronic properties of sila-dodecahedrane as an optical-chemical sensor by density functional theory method

نویسندگان [English]

  • mohamad Qasemnazhand
  • farhad Khoeini
چکیده [English]

In this research, first sila-fullerene and sila-fullerane structures have been investigated, then in terms of chemical properties, they have been compared with the corresponding carbon structures. Our findings show that silicon enters the fullerene structure only by decreasing symmetry, even at smaller sizes of fullerene geometry, it cannot form a stable structure. However, sila-fullerenas are as symmetrical and stable as carbon fulleranes; and also, have high chemical hardness and electron affinity, these two features make them suitable for use in chemical sensors. The electronic properties of the studied structures have been performed with density functional theory (DFT) under functional and basis set of B3LYP/6-31+G(d,p), and Time-dependent DFT calculations have been used to obtain the UV-VIS spectrum.

کلیدواژه‌ها [English]

  • Density Functional Theory
  • Dodecahedrane
  • Fullerene
  • Silicon nanoparticle
  • Sensor
[1] O. Lehtonen, D. Sundholm, “Computational studies of free-standing silicon nanoclusters,” Silicon Nanophotonics: Basic Principles, Current Status and Perspectives, 61, 2009.
 
[2] F. Yousefi, F. Khoeini, A. Rajabpour, “Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation,” International Journal of Heat and Mass Transfer, 146, 118884, 2020.
 
[3] P. Willett, J. M. Barnard, M. G. M. Downs, “Chemical similarity searching,” Journal of chemical information and computer sciences, 38.6, 983-996, 1998.
 
[4] N. Nikolova, J. Jaworska, “Approaches to measure chemical similarity–a review,” QSAR & Combinatorial Science, 22.9‐10, 1006-1026, 2003.
 
[5] Y. C. Martin, J. L. Kofron, L. M. Traphagen, “Do structurally similar molecules have similar biological activity?” Journal of medicinal chemistry, 45.19, 4350-4358, 2002.
 
[6] V. Kumar, Y. Kawazoe, “Hydrogenated silicon fullerenes: Effects of H on the stability of metal-encapsulated silicon clusters,” Physical review letters, 90.5, 055502, 2003.
 
[7] J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H. W. Lerner, M. C. Holthausen, M. Wagner, “One‐Step Synthesis of a [20] Silafullerane with an Endohedral Chloride Ion,” Angewandte Chemie, 127.18, 5519-5523, 2015.
 
[8] F. de Santiago, Á. Miranda, A. Trejo, F. Salazar, E. Carvajal, M. Cruz‐Irisson, L. A. Pérez, “Quantum confinement effects on the harmful‐gas‐sensing properties of silicon nanowires,” International Journal of Quantum Chemistry, 118.20, e25713, 2018.
 
[9] F. Marsusi, M. Qasemnazhand, “Opto-Electronic Properties of Novel Structures: Sila-Fulleranes,” 18th International Conference on Materials and Structural Integrity; Vancouver, Canada, 2016.
 
[10] F. Marsusi, M. Qasemnazhand, “Sila-fulleranes: promising chemically active fullerene analogs,” Nanotechnology, 27, 275704-275714, 2016.
 
[11] P. Mori-Sánchez, A. J. Cohen, W. Yang, “Localization and delocalization errors in density functional theory and implications for band-gap prediction,” Physical review letters, 100.14, 146401, 2008.
 
[12] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” The Journal of physical chemistry, 98.45, 11623-11627, 1994.
 
[13] C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical review B, 37.2, 785, 1998.
 
[14] P. Cysewski, T. Jeliński, M. Przybyłek, A. Shyichuk, “Color prediction from first principle quantum chemistry computa-tions: a case of alizarin dissolved in methanol,” New Journal of Chemistry, 36.9, 1836-1843, 2012.
 
[15] A. Castro, M. A Marques, J. A. Alonso, A. Rubio, “Opti-cal properties of nanostructures from time-dependent density func-tional theory,” Journal of Computational and Theoretical Nanosci-ence, 1.3, 231-255, 2004.
 
[16] R. H. W. J. Ditchfield, W. J_ Hehre, and J. A. Pople, “Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules,” The Journal of Chemical Physics, 54.2, 724-728, 1971.
 
[17] G. A. Petersson, D. K. Malick, W. G. Wilson, J. W. Ochterski, Jr. J. A. Montgomery, M. J. Frisch, “Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry,” The Journal of chemical physics, 109.24, 10570-10579, 1998.
 
[18] M. Qasemnazhand, F. Khoeini, F. Marsusi, “Predicting the new carbon nanocages, fullerynes: a DFT study,” Scientific Reports, 11, 1-14, 2021.
 
[19] M. Qasemnazhand, F. Khoeini, S. Shekarforoush, “Electronic transport properties in the stable phase of a cumulene/B 7/cumulene molecular bridge investigated using density functional theory and a tight-binding method,” New Journal of Chemistry, 43.42, 16515-16523, 2019.
 
[20] F. Pichierri, V. Kumar, Y. Kawazoe, “Exohedral functionalization of the icosahedral cluster Si20H20: a density functional theory study,” Chemical physics letters, 383(5-6), 544-548, 2004.
 
[21] J. Li, H. Bai, N. Yuan, Y. Wu, Y. Ma, P. Xue, Y. Ji, “Density functional theory studies of Si36H36 and C36H36 nanocages,” International Journal of Quantum Chemistry, 114.11, 725-730, 2014.
 
[22] H. Tavakol, D. Shahabi, “DFT QTAIM and NBO study of adsorption of rare gases into and on the surface of sulfur-doped, single-wall carbon nanotubes,” The Journal of Physical Chemistry C, 16, 6502-6510, 2015.
[23] T. Wang, J. Lu, H. Zhu, J. Liu, X. Lin, Y. Liu, Y. Tang, “The electronic properties of chiral silicon nanotubes,” Superlattices and Microstructures, 109, 457-462, 2017.
 [24] ر. حبیب پور قراچه، ر. وزیری،” مطالعه محاسباتی و نظری خواص الکترونی، اسپکتروسکوپی و شیمیایی نانوخوشه­های (ZnO)n (n≤4) “ پژوهش سیستم های بس ذره ای 6، ویژه نامه شماره 2،  11-20، 2016.
[25] M. Qasemnazhand, F. Khoeini, F. Marsusi, “Fulleryne, a new member of the carbon cages family,” arXiv preprint arXiv, 2003.09835, 2020.
[26] M. Qasemnazhand, F. Marsusi, “Theoretical Study of Opto-Electronic properties of Silafulleranes Using Density Functional Theory,” journal of research on many body systems, 7, 77-87, 2017.
[27] J. J. Romero, M. J. Llansola-Portolés, M. L. Dell’Arciprete, H. B. Rodríguez, A. L. Moore, M. C. Gonzalez, “Photoluminescent 1–2 nm sized silicon nanoparticles: a surface-dependent system,” Chemistry of Materials, 25.17, 3488-3498, 2013.
[28] C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, R. Greef, “Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon,” Journal of Physics C: Solid State Physics, 17.35, 6535. 1984.
[29] L. Yang, Y. Liu, Y. L. Zhong, X. X. Jiang, B. Song, X.Y. Ji, Y. Y. Su, L. S. Liao, Y. He, “Fluorescent silicon nanoparti-cles utilized as stable color converters for white light-emitting di-odes,” Applied Physics Letters, 106.17, 173109, 2015.
[30] K. Harun, N. A. Salleh, B. Deghfel, M. K. Yaakob, A. A.  Mohamad, “DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review,” Results in Physics, 16, 102829, 2020.
[31] T. H. Kim, B. Y. Lee, J. Jaworski, K. Yokoyama, W. J. Chung, E. Wang, S. Hong, A. Majumdar, S.W.  Lee, “Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs,” ACS nano, 5.4, 2824-2830, 2011.
 
[32] M. Qasemnazhand, F. Khoeini, F. Marsusi, “Optical response of sila-fulleranes in interaction with glycoproteins for environmental monitoring,” Frontiers in Physics, 9, 69103, 2021.