مطالعه نانو ترانزیستور خازن-منفی بر پایه ماده فروالکتریک دو بعدی In2Se3

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، پردیس دانشکده های فنی دانشگاه تهران، دانشگاه تهران

چکیده

این پژوهش، مطالعه‌ای بر روی نانو ترانزیستور اثر میدان-خازن منفی بر پایه ماده فروالکتریک دو بعدی α-In2Se3 به منظور کاهش تاب زیر آستانه ارائه می‌دهد. گذار فاز و همچنین دمای کوری تک لایه α-In2Se3 با استفاده از شبیه‌سازی دینامیک مولکولی و مونت-کارلو بررسی شد. محاسبات نشان داد دمای کوری α-In2Se3 بالاتر از دمای اتاق است و بنابراین این ماده انتخابی برای کاربرد در نانو ترانزیستور اثر میدان-خازن منفی امیدوار کننده می‌باشد. در ادامه، مشخصات ترانزیستور اثر میدان-خازن منفی با کانال MoS2 و ماده فروالکتریک α-In2Se3با استفاده از استخراج ثابت‌های لاندائو این فروالکتریک ارزیابی شد. در این ترانزیستور تاب زیر آستانه در حدود mV/dec 59-27 برای فروالکتریک با ضخامت nm 5-25 بدست آمد، که می‌توان با استفاده از لایه عایق نازک‌تر با مقادیر بالای κ تاب زیر آستانه را کاهش بیشتری داد.

کلیدواژه‌ها


عنوان مقاله [English]

Negative-Capacitanc Field Effect Nano Transistor Based on a Two-Dimensional Ferroelectric In2Se3

نویسندگان [English]

  • Mahdi Pourfath
  • Maryam Soleimani
School of Electrical and Computer Engineering, University College of Engineering, University of Tehran
[1] A. M. Ionescu, H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” nature, 479(7373), 329-337, 2011.‏
[2] S. Salahuddin, S. Datta, “Use of negative capacitance to provide voltage amplification for low power nanoscale devices,” Nano letters, 8(2), 405-410, 2008.‏
[3] V. Zhirnov, R. K. Cavin, “Negative capacitance to the rescue?,” Nature Nanotechnology, 3(2), 77-78, 2008.‏
[4] X. Wang, et al., “Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating,” npj 2D Materials and Applications, 1(1), 1-7, 2017.‏
[5] J. Jo, W. Y. Choi, J. D. Park, J. W. Shim, H.Y. Yu, C. Shin, “Negative capacitance in organic/ferroelectric capacitor to implement steep switching MOS devices,” Nano letters, 15(7), 4553-4556, 2015.‏
[6] F. Xue, W. Hu, K. C. Lee, L. S. Lu, J. Zhang, H. L. Tang,... & C. H. Lien, “Room-Temperature Ferroelectricity in Hexagonally Layered α-In2Se3 Nanoflakes down to the Monolayer Limit,” Advanced Functional Materials, 28(50), 1803738, 2018.‏
[7] G. Pahwa, T. Dutta, A. Agarwal, Y. S. Chauhan, “Physical insights on negative capacitance transistors in nonhysteresis and hysteresis regimes: MFMIS versus MFIS structures,” IEEE Transactions on Electron Devices, 65(3), 867-873, 2018.‏
[8] A. Aziz, S. Ghosh, S. Datta, S. K. Gupta “Physics-based circuit-compatible SPICE model for ferroelectric transistors,” IEEE Electron Device Letters, 37(6), 805-808, 2016.
[9] A. K. Jonscher, “The physical origin of negative capacitance,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 82(1), 75-81, 1986.‏
[10] M. Hoffmann, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, “On the stabilization of ferroelectric negative capacitance in nanoscale devices,” Nanoscale, 10(23), 10891-10899, 2018.‏
[11] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, K. Banerjee, “Graphene and beyond-graphene 2D crystals for next-generation green electronics,” In Micro-and Nanotechnology Sensors, Systems, and Applications VI (Vol. 9083, p. 908305). International Society for Optics and Photonics, 2014, June.‏
[12] F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang, H. Guo, “Negative capacitance transistors with monolayer black phosphorus,” npj Quantum Materials, 1(1), 1-6, 2016.‏
[13] O. F. Shoron, S. Raghavan, C. R. Freeze, S. Stemmer, “BaTiO3/SrTiO3 heterostructures for ferroelectric field effect transistors,” Applied Physics Letters, 110(23), 232902, 2017.
[14] S. Wan, Y. Li, W. Li, X. Mao, W. Zhu, H. Zeng, “Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In 2 Se 3 thin layers,” Nanoscale, 10, 14885–14892, 2018.
[15] R. Peng, Y. Ma, S. Zhang, B. Huang, L. Kou, Y. Dai, “Self-doped p–n junctions in two-dimensional In 2 X 3 van der Waals materials,” Materials Horizons, 7, 504–510, 2020.
[16] M. Si, AK. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, ... & DY. Peide, “A ferroelectric semiconductor field-effect transistor,” Nature Electronics., 2, 580–586, 2019.
[17] X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao, F. Liu, ... & Z. Liu, “Van der Waals negative capacitance transistors,” Nature communications, 10(1), 1-8, 2019.‏
 
[18] S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen,... & H. Zeng, “Nonvolatile ferroelectric memory effect in ultrathin α-in2Se3,” Advanced Functional Materials, 29, 1808606, 2019.
[19] B. Liu, B. Tang, F. Lv, Y. Zeng, J. Liao, S. Wang, Q. Chen, “Photodetector based on heterostructure of two-dimensional WSe2/In2Se3,” Nanotechnology, 31, 065203, 2020.
[20] J. He, T. Li, L. Zhang, D. He, Y. Wang, H. Ding, ... & H. Zhao,“Efficient Energy Transfer in In2Se3-MoSe2 van der Waals Heterostructures,” ACS Omega, 3, 11930–11936, 2018.
[21] G. Han, Z.-G. Chen, J. Drennan, J. Zou, “Indium selenides: structural characteristics, synthesis and their thermoelectric performances,” Small, 10, 2747–2765, 2014.
[22] L. Debbichi, O. Eriksson, S. Lebègue, “Two-dimensional indium selenides compounds: An ab initio study,” Journal of Physical Chemistry Letters, 6, 3098–3103, 2015.
[23] K. Osamura, Y. Murakami, Y. Tomiie, “Crystal Structures of α-and β-Indium Selenide, In2Se3,” Journal of the Physical Society of Japan, 21, 1848–1848, 1966.
[24] H. D. Lutz, M. Fischer, H.P. Baldus, R. Blachnik, “Zur polymorphie des In2Se3,” Journal of the Less Common Metals, 143, 83–92, 1988.
[25] C. Manolikas, “New results on the phase transformations of In2Se3,” Journal of Solid State Chemistry, 74, 319–328, 1988.
[26] W. Ding, et al. “Prediction of intrinsic two-dimensional ferroelectrics in In 2 Se 3 and other III 2-VI 3 van der Waals materials,” Nature Communications, 8, 1–8, 2017.
[27] C. Cui, W. Hu, W. X. Yan, C. Addiego, W. Gao, Y. Wang,... & L. J. Li, “Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3,” Nano letters, 18, 1253–1258, 2018.
[28] Y. Zhou, D. Wu, Y.  Zhu, Y. Cho, Q. He, X. Yang,... & K. Lai, “Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes,” Nano letters, 17, 5508–5513, 2017.
[29] F. Xue, W. Hu, K. C. Lee, L. S. Lu, J. Zhang, H. L. Tang, & X. Zhang, “Room-Temperature Ferroelectricity in Hexagonally Layered α-In2Se3 Nanoflakes down to the Monolayer Limit,” Advanced Functional Materials, 28, 1803738, 2018.
[30] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B Condens. Matter, 50, 17953–17979, 1994.
[31] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B Condens. Matter, 59, 1758–1775, 1999.
[32] G. Kresse, J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B Condens. Matter, 54, 11169–11186, 1996.
[33] J.P. Perdew, et al., “Restoring the density-gradient expansion for exchange in solids and surfaces,” Physical review letters, 100, 136406, 2008.
[34] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” Journal of Chemical Physics, 132, 154104, 2010.
[35] J. Neugebauer, M. Scheffler, “Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111,” Physical Review B, 46, 16067, 1992.
[36] R. Resta, M. Posternak, A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO 3,” Physical review letters, 70, 1010, 1993.
[37] R. Resta, D. Vanderbilt, “Theory of polarization: A modern approach,” in Topics in Applied Physics, Berlin, Heidelberg: Springer Berlin Heidelberg, 31–68, 2007
[38] G. Henkelman, B. P. Uberuaga, H. Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” Journal of chemistry letters, 113, 9901–9904, 2000.
[39] R. Fei, W. Kang, L. Yang, “Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides,” Physical review letters, 117(9), 097601, 2016.
[40] S. M. Tabatabaei, M. Noei, K. Khaliji, M. Pourfath, M. Fathipour, “A first-principles study on the effect of biaxial strain on the ultimate performance of monolayer MoS2-based double gate field effect transistor,” Journal of Applied Physics, 113(16), 163708, 2013.‏
[41] L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, “Performance limits of monolayer transition metal dichalcogenide transistors,” IEEE Transactions on Electron Devices, 58(9), 3042-3047, 2011.‏
[42] A. Rahman, J. Guo, S. Datta, M.S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Transactions on Electron Devices, 50(9), 1853-1864, 2003.‏
[43] K. Ng, S. J. Hillenius, A. Gruverman, “Transient nature of negative capacitance in ferroelectric field-effect transistors,” Solid State Communications, 265, 12-14, 2017.‏
[44] G. Catalan, D. Jiménez, A. Gruverman, “Negative capacitance detected,” Nature materials, 14(2), 137-139., 2015.
[45] J. Li, B. Nagaraj, H. Liang, W. Cao, C. H. Lee, R. Ramesh, “Ultrafast polarization switching in thin-film ferroelectrics. Applied physics letters, 84(7), 1174-1176, 2004.‏
[46] J. F. Scott, C.A. P.De Araujo, “Ferroelectric memories,” Science, 246(4936), 1400-1405., 1989.
[47] P. K. Larsen, G. L.M. Kampschöer, M. J. E. Ulenaers, G.A. C.M. Spierings, R. Cuppens, “Nanosecond switching of thin ferroelectric films,” Applied physics letters, 59(5), 611-613, 1991.‏