تهیه چندسازه نانوذرات نقره/پلی‌آمید ( نایلون ۶ ) به روش کاهش شیمیایی برای گندزدایی آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه آیت الله بروجردی، بروجرد، ایران

چکیده

 نانوذرات نقره مورد توجه تعداد زیادی از پژوهشگران قرار گرفته است. ویژگی این نانوذرات، به دلیل نسبت سطح به حجم بسیار بالای آنها است. هر چند روش­های متفاوتی برای سنتز نانوذرات نقره ارائه شده است، اما روش کاهش شیمیایی به دلیل سادگی و توانایی کنترل شکل و اندازه ذرات متداول­ترین روش تولید نانوذرات به شمار می­رود. در این پژوهش، اثر گندزدایی ذرات نقره در آب بررسی شده است. با استفاده از نقره نیترات و سدیم سیترات، نانوذرات نقره تهیه شده و سپس، بر بسپار پلی­آمید (نایلون ۶) پوشش داده و از آن به عنوان گندزدای آب، استفاده شد. ریخت­شناسی سطح جاذب، شکل و اندازه نانوذرات با میکروسکوب الکترونی (SEM) و وجود نقره در بسپار پس از پوشش دهی با دستگاه پراش پرتو ایکس (EDAX) تعیین شدند. برای بررسی اثر گندزدایی نانونقره در آب حاوی باکتری شاخص آلودگی آب (اشریشیاکلی) از محیط کشت عمومی نوترینت آگار استفاده شد. همچنین، اثرات تغییر غلظت پیش ­ماده، تغییرات pH، دما و مدت زمان تماس لازم برای گندزدایی مورد بررسی قرار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of silver nanoparticle/polyamide (nylon 6) composite by chemical reduction method for water disinfection

نویسندگان [English]

  • Mohammad Banimahd Keivani 1
  • Mohammad Hosein fekri 2
1 Department of Chemistry, Payame Noor University (PNU), P. O. Box, 19395-3697, Tehran, Iran
2 Department of Chemistry, Faculty of Basic Sciences, Ayatollah Borujerdi University, Borujerd, Iran
چکیده [English]

The nano silver particles has been attractive the large number of researchers. These properties are due to the very high volume ratio of these particles. Although there are different methods have been offered for the synthesis of nano particles of silver but the chemical recovery method because of the simplicity and ability to control and particle's size is the most common methods to product nano particles. In this research the effect of silver disinfection in water has been investigated. The silver particles are produced with using silver nitrate and sodium citrate and then the polyamide is coated on the polymer and used as absorbent filter. Morphology was determined by absorbing the surface and the shape and size of nano particles with an electron microscope and also it the same about the present of silver in the polymer after coating with an X-ray diffraction device (EDAX). The nutrient agar is used for investigate of the effect of nano silver disinfection in water pollution (Escherichia coli) from the general culture medium and also the effects of changing of power hydrogen (pH) temperatures and duration of contact required for disinfection water studied.

[1] H. Copeland, “The kingdoms of organisms,” Quarterly Review of Biology, 13, 383-420, 1938.
[2] K. Todar, “Pathogenic e. coli,” Online Textbook of Bacteriology. University of Wisconsin–Madison Department of Bacteriology. Retrieved 2007.
[3] M. H. Fekri, M. Banimahd Keivani, M. Darvishpour, H. Banimahd Keivani, “Application of electroactive nano composite coated onto wood sawdust for the removal of malachite green dye from textile wastewaters,” Journal of Physical & Theoretical Chemistry, 9(2), 95-102, 2012.
[4] H. Dashti Khavidaki, M. H. Fekri, “Removing thallium (I) ion from aqueous solutions using modified ZnO nanopowder,” Journal of Advances in Chemistry, 11(7), 3777-3788, 2015.
[5] M.H. Fekri, M. Banimahd Keivani, M. Razavi Mehr, B. Akbari-adergani, “Effective parameters on removal of rhodamine b from colored wastewater by nano polyaniline/sawdust composite,” Journal of Mazandaran University of Medical Sciences, 29(177), 166-179, 2019.
[6] M. H. Fekri, M. Razavi Mehr, S. Isanejad Mohamareh, M. Yari, “Synthesis of magnetic activated nanocarbons (Fe3O4/AC) using flaxseed waste as the green antibiotic adsorbent of cefixime and optimization of effective parameters by taguchi and bax-beckman methods,” Nanomeghyas, 7(4), 110-121, 2021.
[7] A. Shokri, “Using Mn based on lightweight expanded clay aggregateas an original catalyst for the removal of NO2 pollutant in aqueous environment,” Surfaces and Interfaces, 21, 100705.
[8] A. Shokri, “Using ZnO based on Bentonite as a nano photo catalyst for degradation of Acid Red 114 in synthetic wastewater,” 2020, DOI: 10.22034/jna.2020.1898029.1205
 [9] A. Bayat, A. Shokri, “Degradation of p-Nitrotoluene in aqueous environment by Fe (II)/Peroxymonosulfate using full factorial experimental design,” Separation Science and Technology, 2021.
[10] C. Costa, A. Conte, G. G. Buonocore, M. A. Del Nobile, “Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad,” Int. J. Food Microbiol., 183(3), 164-167, 2011.
[11] M. Bosetti, A. Masse, E. Tobin, M. Cannas, “Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity,” Water research, 23(3), 887-892, 2002.
[12]. T. M. Tolaymat, A. M. El Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton, M. Suidan, “An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers,” Science of the Total Environment, 408, 999-1006, 2010.
[13] M.C. McLeod, R.S. McHenry, E. J. Beckman, C. B. Roberts, “Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO-2 reverse micelle systems,” J. Phes. Chem. B., 107, 2693-2700, 2003.
[14] M. Nozaei, M. Molaei, F. Farahmandzadeh, B. Ramazanlo, “Synthesis and improvement of the optical peroperties of CdTe/CdSe core-shell QDs by using microwave approach,” Nanomeghyas, 7(3), 61-67, 2020.
[15]. M. Hosseinkhani, M. Montazer, S. Eskandarnejad, M. K. Rahimi, “Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 431-438, 2012.
[16]. A. Rheima, A. Abed Anber, H. Ismael Abdullah, A. Hussein Ismail, “Synthesis of Alpha-Gamma Aluminum Oxide Nanocomposite via Electrochemical Method for Antibacterial Activity,” Nano Biomedicine and Engineering, 13(1), 1-5, 2020.
[17]. Sh. Emrani, R. Zhiani, M. Dafe Jafari, “The biosynthesis of silver nanoparticles using plants of glycyrrhiza glabra and mentha piperata and its antimicrobial effect on some bacterias that cause tooth decay,” Journal of Rafsanjan University of Medical Sciences, 16(10), 953-968, 2018.
[18]. M. Mohtashami, S. Sepehriseresht, E. Asli, M. A. Boroumand, M. Ghasemi, “Synthesis of silver nanoparticles through chemical reduction and biosynthesis methods and evaluation of their antibacterial effects,” Razi Journal of Medical Sciences, 19(103), 65-74, 2012.
[19]. K. S. Chou, C. Y. Ren, “Synthesis of nanosized silver particles by chemical reduction method,” Materials Chemistry and Physics, 3, 109-119, 2009.